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a b s t r a c t 

Understanding which brain regions are related to a specific neurological disorder or cognitive stimuli has 

been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) 

framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomark- 

ers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional 

(Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the 

need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers 

(R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are impor- 

tant for prediction. Furthermore, we propose regularization terms—unit loss, topK pooling (TPK) loss and 

group-level consistency (GLC) loss—on pooling results to encourage reasonable ROI-selection and pro- 

vide flexibility to encourage either fully individual- or patterns that agree with group-level data. We ap- 

ply the BrainGNN framework on two independent fMRI datasets: an Autism Spectrum Disorder (ASD) 

fMRI dataset and data from the Human Connectome Project (HCP) 900 Subject Release. We investigate 

different choices of the hyper-parameters and show that BrainGNN outperforms the alternative fMRI 

image analysis methods in terms of four different evaluation metrics. The obtained community clus- 

tering and salient ROI detection results show a high correspondence with the previous neuroimaging- 

derived evidence of biomarkers for ASD and specific task states decoded for HCP. Our code is available at 

https://github.com/xxlya/BrainGNN _ Pytorch 

© 2021 Published by Elsevier B.V. 
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. Introduction 

The brain is an exceptionally complex system and understand- 

ng its functional organization is the goal of modern neuroscience. 

sing fMRI, large strides in understanding this organization have 

een made by modeling the brain as a graph—a mathematical con- 

truct describing the connections or interactions (i.e. edges) be- 

ween different discrete objects (i.e. nodes). To create these graphs, 

odes are defined as brain regions of interest (ROIs) and edges are 

efined as the functional connectivity between those ROIs, com- 
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uted as the pairwise correlations of functional magnetic reso- 

ance imaging (fMRI) time series, as illustrated in Fig. 1 . 

Traditional graph-based analyses for fMRI have focused on 

wo-stage methods: stage 1—feature engineering from graphs—and 

tage 2—analysis on the extracted features. For feature engineer- 

ng, studies have used graph theoretical metrics to summarize the 

unctional connectivity for each node into statistical measurements 

 Wang et al., 2010; Karwowski et al., 2019 ). Additionally, due to the 

igh dimensionality of fMRI data, usually ROIs are clustered into 

ighly connected communities to reduce dimensionality ( Mo ̆gultay 

t al., 2015; Du et al., 2018 ) or perform data-driven feature selec- 

ion ( Shen et al., 2017 ). For these two-stage methods, if the results

rom the first stage are not reliable, significant errors can be in- 

uced in the second stage. 

https://doi.org/10.1016/j.media.2021.102233
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102233&domain=pdf
https://github.com/xxlya/BrainGNN_Pytorch
mailto:xiaoxiao.li@aya.yale.edu
mailto:james.duncan@yale.edu
https://doi.org/10.1016/j.media.2021.102233
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Fig. 1. The overview of the pipeline. fMRI images are parcellated by an atlas and transferred to graphs. Then, the graphs are sent to our proposed BrainGNN, which gives 

the prediction of specific tasks. Jointly, BrainGNN selects salient brain regions that are informative to the prediction task and clusters brain regions into prediction-related 

communities. 
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The past few years have seen growing prevalence of using graph 

eural networks (GNN) for end-to-end graph learning applications. 

NNs are the state-of-the-art deep learning methods for most 

raph-structured data analysis problems. They combine node fea- 

ures, edge features, and graph structure by using a neural net- 

ork to embed node information and pass information through 

dges in the graph. As such, they can be viewed as a gener- 

lization of the traditional convolutional neural networks (CNN) 

or images. Due to their superior performance and interpretabil- 

ty, GNNs have become a widely applied graph analysis method 

 Kim and Ye, 2020; Kazi et al., 2019; Yan et al., 2019; Yang et al.,

019; Gopinath et al., 2019; Nandakumar et al., 2019 ). Most ex- 

sting GNNs are built on graphs that do not have a correspon- 

ence between the nodes of different instances, such as social net- 

orks and protein networks. These methods—including the current 

NN methods for fMRI analysis—use the same embedding over dif- 

erent nodes, which implicitly assumes brain graphs are transla- 

ion invariant and nodes on brain graphs (brain ROIs) are identi- 

al. However, nodes in the same brain graph have distinct loca- 

ions and unique identities. Thus, applying the same embedding 

ver all nodes is problematic. In addition, although recent stud- 

es have investigated group-level ( Li et al., 2018; Venkataraman 

t al., 2016; Salman et al., 2019; Yan et al., 2019 ) and individual-

evel ( Brennan et al., 2019; Mahowald and Fedorenko, 2016; Li 

t al., 2019 ) neurological biomarkers, few GNN studies have ex- 

lored both individual-level and group-level explanations, which 

re critical in neuroimaging research. 

In this work, we propose a graph neural network-based frame- 

ork for mapping regional and cross-regional functional activa- 

ion patterns for classification tasks, such as classifying neurodis- 

rder patients versus healthy control (HC) subjects and perform- 

ng cognitive task decoding. Unlike the existing work mentioned 

bove, we tackle the limitations of considering graph nodes (brain 

OIs) as identical by proposing a novel clustering-based embed- 

ing method in the graph convolutional layer. Further, we aim to 

rovide users the flexibility to interpret different levels of biomark- 

rs through graph node pooling and several innovative loss terms 

o regulate the pooling operation. In addition, different from much 

f the GNN literature ( Parisot et al., 2018; Kazi et al., 2019 ) where

opulational graphs based on fMRI are modeled by treating each 

ubject as a node on the graph, we model each subject’s brain as 

ne graph and each brain ROI as a node to learn ROI-based graph 

mbeddings. Specifically, our framework jointly learns ROI cluster- 

ng and the whole-brain fMRI prediction. This not only reduces 

reconceived errors, but also learns particular clustering patterns 
a

2 
ssociated with the other quantitative brain image analysis tasks. 

pecifically, from estimated model parameters, we can retrieve ROI 

lustering patterns. Also, our GNN design facilitates model inter- 

retability by regulating intermediate outputs with a novel loss 

erm for enforcing similarity of pooling scores , which provides the 

exibility to choose between individual-level and group-level ex- 

lanations. 

A preliminary version of this work, Pooling Regularized Graph 

eural Network (PR-GNN) for fMRI Biomarker Analysis ( Li et al., 

020 ) was presented at the 22st International Conference on Medi- 

al Image Computing and Computer Assisted Intervention. This pa- 

er extends the preliminary version by designing novel graph con- 

olutional layers and analyzing a new dataset and task. 

. BrainGNN 

.1. Notations 

First we parcellate the brain into N ROIs based on its T1 struc- 

ural MRI. We define ROIs as graph nodes V = { v 1 , . . . , v N } and the

odes are preordered. As brain ROIs can be aligned by brain par- 

ellation atlases based on their locations in the structure space, 

e define the brain graphs as ordered aligned graphs. We de- 

ne an undirected weighted graph as G = (V, E ) , where E is the

dge set, i.e., a collection of (v i , v j ) linking vertices from v i to

 j . In our setting, G has an associated node feature set and can 

e represented as matrix H = [ h 1 , . . . , h N ] 
� 

, where h i is the fea- 

ure vector associated with node v i . For every edge connecting two 

odes, (v i , v j ) ∈ E , we have its strength e i j ∈ R and e i j > 0 . We also

efine e i j = 0 for (v i , v j ) �∈ E and therefore the adjacency matrix

 = [ e i j ] ∈ R 

N×N is well defined. We also list all the notations in

able 1 . 

.2. Architecture overview 

Classification on graphs is achieved by first embedding node 

eatures into a low-dimensional space, then coarsening or pooling 

odes and summarizing them. The summarized vector is then fed 

nto a multi-layer perceptron (MLP). We train the graph convolu- 

ional/pooling layers and the MLP in an end-to-end fashion. Our 

roposed network architecture is illustrated in Fig. ( 2 ). It is formed 

y three different types of layers: graph convolutional layers, node 

ooling layers and a readout layer. Generally speaking, GNNs in- 

uctively learn a node representation by recursively transforming 

nd aggregating the feature vectors of its neighboring nodes. 
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Table 1 

Notations used in the paper. 

Notations Description 

C number of classes 

M number of samples 

N number of ROIs 

v i node i (ROI i ) in the graph 

N (i ) neighborhood of v i 
e i j edge connecting node v i and v j 
˜ e i j normalized edge score over j ∈ N (i ) 

V nodes set 

E edge set 

G graph, G = (V, E ) 

E adjacency matrix, E = [ e i j ] ∈ R N×N 

d (l) node feature dimension of the l th layer 

h i node feature vector associated with v i , h i ∈ R d 
H node feature matrix 
˜ h i embedded node feature vector associated with v i before pooling, ˜ h i ∈ R d 
˜ H embedded node feature matrix before pooling 

s m node pooling score vector before normalization of subject m 

˜ s m node pooling score vector after normalization of subject m 

r i one-hot encoding vector of v i , r i ∈ R N , r i, j = 0 , ∀ j � = i 

k number of nodes left after pooling 

K number of ROI communities 

αi learnable membership score vector of v i to each community, αi ∈ R K 
βu learnable filter basis, β

(l) 
u ∈ R d (l+1) ·d (l) 

, ∀ u ∈ { 1 , . . . , K (l) } 
W 

(l) 
i 

graph kernel for node v i of the l th layer, W 

(l) 
i 

∈ R d (l+1) ×d (l) 

λ parameter associated with loss function 

Fig. 2. (a) introduces the BrainGNN architecture that we propose in this work. BrainGNN is composed of blocks of Ra-GConv layers and R-pool layers. It takes graphs 

as inputs and outputs graph-level predictions. (b) shows how the Ra-GConv layer embeds node features. First, nodes are softly assigned to communities based on their 

membership scores to the communities. Each community is associated with a different basis vector. Each node is embedded by the particular basis vectors based on the 

communities that it belongs to. Then, by aggregating a node’s own embedding and its neighbors’ embedding, the updated representation is assigned to each node on the 

graph. (c) shows how R-pool selects nodes to keep. First, all the nodes’ representations are projected to a learnable vector. The nodes with large projected values are retained 

with their corresponding connections. 

3 
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A graph convolutional layer is used to probe the graph struc- 

ure by using edge features, which contain important information 

bout graphs. For example, the weights of the edges in brain fMRI 

raphs can represent the relationship between different ROIs. 

Following Schlichtkrull et al. (2018) , we define h 

(l) 
i 

∈ R 

d (l) 
as 

he features for the i th node in the l th layer, where d (l) is the di-

ension of the l th layer features. The propagation model for the 

orward-pass update of node representation is calculated as: 

˜ 
 

(l+1) 
i 

= relu 

( 

W 

(l) 
i 

h 

(l) 
i 

+ 

∑ 

j∈N (l) (i ) 

e (l) 
i j 

W 

(l) 
j 

h 

(l) 
j 

) 

, (1) 

here N 

(l) (i ) denotes the set of indices of neighboring nodes of 

ode v i , e (l) 
i j 

denotes the features associated with the edge from 

 i to v j , W 

(l) 
i 

denotes the model’s parameters to be learned. The 

rst layer is operated on the original graph, i.e. h 

(0) 
i 

= h i , e 
(0) 
i j 

= e i j .

o avoid increasing the scale of output features, the edge features 

eed to be normalized, as in GAT ( Veli ̌ckovi ́c et al., 2018 ) and GNN

 Kipf and Welling, 2016 ). Due to the aggregation mechanism, we 

ormalize the weights by e (l) 
i j 

= e (l) 
i j 

/ 
∑ 

j∈N (l) (i ) e 
(l) 
i j 

. 

A node pooling layer is used to reduce the size of the graph, ei-

her by grouping the nodes together or pruning the original graph 

 to a subgraph G s by keeping some important nodes only. We will 

ocus on the pruning method, as it is more interpretable and can 

elp detect biomarkers. 

A readout layer is used to summarize the node feature vectors 

 h 

(l) 
i 

} into a single vector z (l) which is finally fed into a classifier

or graph classification. 

.3. Layers in BrainGNN 

In this section, we provide insights and highlight the innovative 

esign aspects of our proposed BrainGNN architecture. 

.3.1. ROI-aware Graph Convolutional Layer 

Overview We propose an ROI-aware graph convolutional layer 

Ra-GConv) with two insights. First, when computing the node em- 

edding, we allow Ra-GConv to learn different embedding weights 

n graph convolutional kernels conditioned on the ROI (geomet- 

ically distributed information of the brain), instead of using the 

ame weights W on all the nodes as shown in Eq. (1) . In our de-

ign, the weights W can be decomposed as a linear combination 

f a set of basis functions, where each basis function represents a 

ommunity. Second, we include edge weights for message filtering, 

s the magnitude of edge weights presents the connection strength 

etween two ROIs. We assume that more closely connected ROIs 

ave a larger impact on each other. Design We begin by assuming 

he graphs have additional regional information and the nodes of 

he same region from different graphs have similar properties. We 

ropose to encode the regional information into the embedding 

ernel function for the nodes. Given node i ’s regional information 

 i , such as the node’s coordinates in a mesh graph, we propose to 

earn the vectorized embedding kernel vec (W 

(l) 
i 

) based on r i for 

he l th Ra-GConv layer: 

vec (W 

(l) 
i 

) = f (l) 
MLP 

(r i ) = �(l) 
2 

relu (�(l) 
1 

r i ) + b 

(l) , (2) 

here the MLP with parameters { �(l) 
1 

, �(l) 
2 

} maps r i to a d (l+1) ·
 

(l) dimensional vector then reshapes the output to a d (l+1) × d (l) 

atrix W 

(l) 
i 

and b 

(l) is the bias term in the MLP. 

Given a brain parcellated into N ROIs, we order the ROIs in 

he same manner for all the brain graphs. Therefore, the nodes in 

he graphs of different subjects are aligned. However, the convo- 

utional embedding should be independent of the ordering meth- 

ds. Given an ROI ordering for all the graphs, we use one-hot en- 
4 
oding to represent the ROI’s location information, instead of us- 

ng coordinates, because the nodes in the brain are aligned well. 

pecifically, for node v i , its ROI representation r i is a N-dimensional 

ector with 1 in the i th entry and 0 for the other entries. As- 

ume that �(l) 
1 

= [ α(l) 
1 

, . . . , α(l) 

N (l) 
] , where N 

(l) is the number of ROIs

n the l th layer, α(l) 
i 

= [ α(l) 
i 1 

, . . . , α(l) 

iK (l) 
] � ∈ R 

K (l) 
, ∀ i ∈ { 1 , . . . , N 

(l) } ,
here K 

(l) can be seen as the number of clustered communi- 

ies for the N 

(l) ROIs. Assume �(l) 
2 

= [ β
(l) 
1 , . . . , β

(l) 

K (l) ] with β
(l) 
u ∈ 

 

d (l+1) ·d (l) 
, ∀ u ∈ { 1 , . . . , K 

(l) } . Then Eq. (2) can be rewritten as 

ec (W 

(l) 
i 

) = 

K (l) ∑ 

u =1 

(α(l) 
iu 

) + β(l) 
u + b 

(l) 
. (3) 

e can view { β(l) 
u : j = 1 , . . . , K 

(l) } as a basis and (α(l) 
iu 

) + as the

oordinates. From another perspective, (α(l) 
iu 

) + can be seen as the 

on-negative assignment score of ROI i to community u . If we train 

ifferent embedding kernels for different ROIs for the l th layer, the 

otal parameters to be learned will be N 

(l) d (l) d (l+1) . Usually we 

ave K 

(l) � N 

(l) . By Eq. (3) , we can reduce the number of learn-

ble parameters to K 

(l) d (l) d (l+1) + N 

(l) K 

(l) parameters, while still 

ssigning a separate embedding kernel for each ROI. The ROIs in 

he same community will be embedded by the similar kernel so 

hat nodes in different communities are embedded in different 

ays. 

As the graph convolution operations in Gong and Cheng (2019) , 

he node features will be multiplied by the edge weights, so that 

eighbors connected with stronger edges have a larger influence. 

.3.2. ROI-topK pooling layer 

Overview To perform graph-level classification, a layer for di- 

ensionality reduction is needed since the number of nodes and 

he feature dimension per node are both large. Recent findings 

ave shown that some ROIs are more indicative of predicting neu- 

ological disorders than the others ( Kaiser et al., 2010; Baker et al., 

014 ), suggesting that they should be kept in the dimensionality 

eduction step. Therefore the node (ROI) pooling layer (R-pool) is 

esigned to keep the most indicative ROIs while removing noisy 

odes, thereby reducing the dimensionality of the entire graph. De- 

ign To make sure that down-sampling layers behave idiomatically 

ith respect to different graph sizes and structures, we adopt the 

pproach in Cangea et al. (2018) and Gao and Ji (2019) for reduc- 

ng graph nodes. The choice of which nodes to drop is determined 

ased on projecting the node features onto a learnable vector 

 

(l) ∈ R 

d (l) 
. The nodes receiving lower scores will experience less 

eature retention. We denote ˜ H 

(l+1) = [ ̃  h 

(l+1) 
1 

, . . . , ̃  h 

(l+1) 

N (l) 
] � , where 

 

(l) is the number of nodes at the l th layer. Fully written out, 

he operation of this pooling layer (computing a pooled graph, 

V (l+1) , E (l+1) ) , from an input graph, (V (l) , E (l) ) ), is expressed as

ollows: 

s (l) = 

˜ H 

(l+1) w 

(l) / ‖ w 

(l) ‖ 2 

˜ s (l) = (s (l) − μ(s (l) )) /σ (s (l) ) 

i = top k ( ̃ s (l) , k ) 

H 

(l+1) = ( ̃  H 

(l+1) 
� sigmoid ( ̃ s (l) )) i , : 

E (l+1) = E (l) 
i , i 

. 

(4) 

ere ‖ · ‖ is the L 2 norm, μ and σ take the input vector and 

utput the mean and standard deviation of its elements. The no- 

ation top k finds the indices corresponding to the largest k ele- 

ents in score vector ˜ s . � is (broadcasted) element-wise multi- 

lication, and (·) i , j is an indexing operation which takes elements 

t row indices specified by i and column indices specified by j 

colon denotes all indices). The pooling operation retains sparsity 

y requiring only a projection, a point-wise multiplication and a 

licing into the original features and adjacency matrix. Different 
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ŝ  

i

d

L

W

p

i  

s

t

s

t

s

L

w

b

rom Cangea et al. (2018) , we added element-wise score normal- 

zation 

˜ s (l) = (s (l) − μ(s (l) )) /σ (s (l) ) , which is important for calcu- 

ating the loss functions in Section 2.4 . 

.3.3. Readout layer 

Lastly, we seek a ǣflattening ǥ operation to preserve information 

bout the input graph in a fixed-size representation. Concretely, to 

ummarize the output graph of the l th conv-pool block, (V (l) , E (l) ) ,

e use 

 

(l) = mean H 

(l) ‖ max H 

(l) , (5) 

here H 

(l) = [ h 

(l) 
i 

: i = 1 , ..., N 

(l) ] , mean and max operate element-

isely, and ‖ denotes concatenation. To retain information of a 

raph in a vector, we concatenate both mean and max summariza- 

ion for a more informative graph-level representation. The final 

ummary vector is obtained as the concatenation of all those sum- 

aries (i.e. z = z (1) ‖ z (2) ‖ · · · ‖ z (L ) ) and it is submitted to a MLP

or obtaining final predictions. 

.3.4. Putting layers together 

All in all, the architecture (as shown in Fig. 2 ) consists of two

inds of layers — Ra-GConv layers shown in the pink blocks and 

-pool layer shown in the yellow blocks. The input is a weighted 

raph with its node attributes constructed from fMRI. We form a 

wo-layer GNN block starting with ROI-aware node embedding by 

he proposed Ra-GConv layer in Section 2.3.1 , followed by the pro- 

osed R-pool layer in Section 2.3.2 . The whole network sequen- 

ially concatenates these GNN blocks, and readout layers are added 

fter each GNN block. The final summary vector concatenates all 

he summaries from the readout layers, and an MLP is applied af- 

er that to give final predictions. 

.4. Loss functions 

The classification loss is the cross entropy loss: 

 ce = − 1 

M 

M ∑ 

m =1 

C ∑ 

c=1 

y m,c log ( ̂  y m,c ) , (6) 

here M is the number of instances, C is the number of classes, 

 mc is the ground truth label and ˆ y mc is the model output. 

Now we describe the loss terms designed to regulate the learn- 

ng process and control the interpretability. Unit loss As we men- 

ioned in Section 2.3.2 , we project the node representation to a 

earnable vector w 

(l) ∈ R 

d (l) 
. The learnable vector w 

(l) can be arbi- 

rarily scaled while the pooling scores s (l) = 

˜ H 

(l+1) (a w 

(l) ) / ‖ a w 

(l) ‖
emain the same with non-zero scalar a ∈ R . This suggests an iden-

ifiability issue, i.e. multiple parameters generate the same distri- 

ution of the observed data. To remove this issue, we add a con- 

traint that w 

(l) is a unit vector. To avoid the problem of identifia- 

ility, we propose unit loss: 

 

(l) 
unit 

= (‖ w 

(l) ‖ 2 − 1) 2 . (7) 

Group-level consistency loss We propose group-level consistency 

GLC) loss to force BrainGNN to select similar ROIs in a R-pool layer 

or different input instances. This is because for some applications, 

sers may want to find the common patterns/biomarkers for a cer- 

ain neuro-prediction task. Note that ˜ s (l) in Eq. (4) is computed 

rom the input H 

(l) and they change as the layer goes deeper for 

ifferent instances. Therefore, for different inputs H 

(l) , the selected 

ntries of ˜ s (l) may not correspond to the same set of nodes in the 

riginal graph, so it is not meaningful to enforce similarity of these 

ntries. Thus, we only use the GLC loss regularization for ˜ s (l) vec- 

ors after the first pooling layer. 

Now, we mathematically describe the novel GLC loss. In each 

raining batch, suppose there are M instances, which can be par- 

itioned into C subsets based on the class labels, I c = { m : m =
5 
 , . . . , M, y m,c = 1 } , for c = 1 , . . . , C. And y m,c = 1 indicates the m 

th 

nstance belongs to class c. We form the scoring matrix for the 

nstances belonging to class c as S (1) 
c = [ ̃ s (1) 

m 

: m ∈ I c ] � ∈ R 

M c ×N ,

here M c = |I c | . The GLC loss can be expressed as: 

 GLC = 

C ∑ 

c=1 

∑ 

m,n ∈I c 
‖ ̃

 s (1) 
m 

− ˜ s (1) 
n ‖ 

2 = 2 

C ∑ 

c=1 

Tr ((S (1) 
c ) � L c S 

(1) 
c ) , (8) 

here L c = D c − W c is a symmetric positive semidefinite matrix, W c 

s a M c × M c matrix with values of 1, D c is a M c × M c diagonal ma-

rix with M c as diagonal elements ( Von Luxburg, 2007 ), m and n

re the indices for instances. Thus, Eq. (8) can be viewed as cal- 

ulating pairwise pooling score similarities of the instances. 

TopK pooling loss The original TPK pooling( Gao and Ji, 2019 ) 

sed in our R-pool layer does not have regulations on the pool- 

ng scores. Thus, the brain ROIs’ importance rankings may be very 

ifferent for different input instances. This can be problematic if 

he objective is to find the important ROIs shared within a group. 

herefore, we propose TopK pooling (TPK) loss to encourage rea- 

onable node selection in R-pool layers. In other words, we hope 

he top k selected indicative ROIs should have significantly differ- 

nt scores than those of the unselected nodes. Ideally, the scores 

or the selected nodes should be close to 1 and the scores for the 

nselected nodes should be close to 0. To achieve this, we rank sig- 

oid ( ̃ s (l) 
m 

) for the m th instance in a descending order, denote it as

 

 

(l) 
m 

= [ ̂ s (l) 
m, 1 

, . . . , ̂  s (l) 

m,N (l) 
] , and apply a constraint to all the M training

nstances to make the values of ˆ s (l) 
m 

more dispersed. In practice, we 

efine TPK loss using binary cross-entropy as: 

 

(l) 
T PK 

= − 1 

M 

M ∑ 

m =1 

1 

N 

(l) 

( k ∑ 

i =1 

log ( ̂  s (l) 
m,i 

)) + 

N (l) −k ∑ 

i =1 

log (1 − ˆ s (l) 
m,i + k ) 

)
, (9) 

e show the kernel density estimate plots of normalized node 

ooling scores (indication of the importance of the nodes) chang- 

ng over the training epoch in Fig. 3 when k = 

1 
2 N 

(l) . It is clear to

ee that the pooling scores are more dispersed over time, Hence 

he top 50% selected nodes have significantly higher importance 

cores than the unselected ones. In the experiments below, we fur- 

her demonstrate the effectiveness of this loss term in an ablation 

tudy. For now, we finalize our loss function below. 

Finally, the final loss function is formed as: 

 total = L ce + 

L ∑ 

l=1 

L (l) 
unit 

+ λ1 

L ∑ 

l=1 

L (l) 
T PK 

+ λ2 L GLC , (10) 

here λ’s are tunable hyper-parameters, l indicates the l th GNN 

lock and L is the total number of GNN blocks. To maintain a con- 



X. Li, Y. Zhou, N. Dvornek et al. Medical Image Analysis 74 (2021) 102233 

c

L  

c

t

p  

i

w

t

c

e

2

2

v

t

u

i

t

s

b  

a

{
2

n

i

h

o

i

t

a

g

m

t

L

v

3

3

D

C

2

S

d  

M

s

b

a

i

i

s

t

3

c

(

l

b  

p

(

t  

t

a  

r

s

s

l

fi

f

c

n  

a

a

a

t

p

c

t

d

2

t

c

g

t

s

e

t  

h

r

c

c

t

3

w

t

f

m

t

f

e

a

G

t

f

b

n

t

n

g

B

3

e

m

l

e  

f  

2  
ise loss function, we do not have tunable hyper-parameters for 

 ce and L (l) 
unit 

. We observed that the unit loss L (l) 
unit 

can quickly de-

rease to a small number close to zero. Empirically, this term and 

he cross entropy term L ce already have the same magnitude (sup- 

ose the latter ranges from − log (0 . 5) to − log (1) ). If the unit loss

s much larger than the cross entropy term, the entire loss function 

ill penalize it more and force it to have the same magnitude as 

he cross entropy. Also, since w 

(l) can be arbitrarily scaled without 

hanging the output, the optimization can scale it to reduce the 

ntire loss without affecting the other terms. 

.5. Interpretation from BrainGNN 

.5.1. Community detection from convolutional layers 

The important contribution of our proposed ROI-aware con- 

olutional layer is the implied community clustering patterns in 

he graph. Discovering brain community patterns is critical to 

nderstanding co-activation and interaction in the brain. Revis- 

ting Eq. (3) and following Loe and Jensen (2015) , α+ 
iu 

provides 

he membership of ROI i to community u . The community as- 

ignment is soft and overlaid. Specifically, we consider region i 

elongs to community u if αiu > μ( α+ 
i 
) + σ ( α+ 

i 
) . This gives us

 collection of community indices indicating region membership 

 

i u ⊂ { 1 , ..., N} : u = 1 , ..., K } . 

.5.2. Biomarker Detection from pooling layers 

Without the added TPK loss ( Eq. (9) ), the significance of the 

odes left after pooling cannot be guaranteed. With TPK loss, pool- 

ng scores are more dispersed over time, hence the selected nodes 

ave significantly higher importance scores than the unselected 

nes. 

The strength of the GLC loss controls the trade-off between 

ndividual-level interpretation and group-level interpretation. On 

he one hand, for precision medicine, individual-level biomarkers 

re desired for planning targeted treatment. On the other hand, 

roup-level biomarkers are essential for understanding the com- 

on characteristic patterns associated with the disease. We can 

une the coefficient λ2 to control different levels of interpretation. 

arge λ2 encourages selecting similar nodes, while small λ2 allows 

arious node selection results for different instances. 

. Experiments and results 

.1. Datasets 

Two independent datasets are used: the Biopoint Autism Study 

ataset (Biopoint) ( Venkataraman et al., 2016 ) and the Human 

onnectome Project (HCP) 900 Subject Release ( Van Essen et al., 

013 ). For the Biopoint dataset, the aim is to classify Autism 

pectrum Disorder (ASD) and Healthy Control (HC). For the HCP 

ataset, like the recent work ( Wang et al., 2019; Yan et al., 2019;

cClure et al., 2020 ), the aim is to decode and map cognitive 

tates of the human brain. Thus, we classify 7 task states - gam- 

ling, language, motor, relational, social, working memory (WM), 

nd emotion, then infer the decoded task-related salient ROIs from 

nterpretation. The HCP states classification task helps validate our 

nterpretation results (will discuss in Section 3.5.2 ). These repre- 

ent two key examples of task-based paradigms that will illustrate 

he power and portability of our approach. 

.1.1. Biopoint dataset 

The Biopoint Autism Study Dataset ( Venkataraman et al., 2016 ) 

ontains task fMRI scans for ASD and neurotypical healthy controls 

HCs). The subjects perform the “biopoint” task, viewing point- 

ight animations of coherent and scrambled biological motion in a 

lock design ( Kaiser et al., 2010 ) ( 24 s per block). The fMRI data are
6 
reprocessed using the pipeline described in Venkataraman et al. 

2016) , and include the removal of subjects that exhibit head mo- 

ion of > 0 . 5 mm translation or > 0 . 5 ◦ rotation in 25% or more

ime points of the BOLD series. This results in 75 ASD children 

nd 43 age-matched (p > 0 . 124) and IQ-matched (p > 0 . 122) neu-

otypical HCs. We insured that the head motion parameters are not 

ignificantly different between the groups. There are more male 

ubjects than female samples, similar to the level of ASD preva- 

ence in the population ( Fombonne, 2009; Hull et al., 2020 ). The 

rst few frames are discarded, resulting in 146 frames for each 

MRI sequence. 

The Desikan-Killiany ( Desikan et al., 2006 ) atlas is used to par- 

ellate brain images into 84 ROIs. The mean time series for each 

ode is extracted from a random 1 / 3 of voxels in the ROI (given

n atlas) by bootstrapping. We use Pearson correlation coefficient 

s node features (i.e a vector of Pearson correlation coefficients to 

ll ROIs). Edges are defined by thresholding (in practice, we use 

op 10% positive which guarantees no isolated nodes in the graph) 

artial correlations to achieve sparse connections. We use partial 

orrelation to build edges for the following two reasons: 1) due to 

he over-smoothing effect of the general graph neural networks for 

ensely connected graphs ( Oono and Suzuki, 2019; Cai and Wang, 

020 ), it is better to avoid dense graphs and partial correlation 

ends to lead to sparse graphs; 2) Pearson correlation and partial 

orrelation are different measures of fMRI connectivity; we aggre- 

ate them by using one to build edge connections and the other 

o build node features. This is motivated by recent multi-graph fu- 

ion works for neuroimaging analysis that aim to capture differ- 

nt brain activity patterns by leveraging different correlation ma- 

rices ( Yang et al., 2016; Gan et al., 2020 ). Hence, node features are

 

(0) 
i 

∈ R 

84 . Each fMRI dataset is augmented 30 times by spatially 

esampling the fMRI bold signals ( Dvornek et al., 2018 ). Specifi- 

ally, we randomly sample 1/3 of the voxels within an ROI to cal- 

ulate the mean time series. This sampling process is repeated 30 

imes, resulting in 30 graphs for each fMRI image instance. 

.1.2. HCP dataset 

For this dataset, we restrict our analyses to those individuals 

ho participated with full length of scan, whose mean frame- 

o-frame displacement is less than 0.1 mm and whose maximum 

rame-to-frame displacement is less than 0.15 mm (n = 506; 237 

ales; ages 2237). This conservative threshold for exclusion due 

o motion is used to mitigate the substantial effects of motion on 

unctional connectivity. 

We process the HCP fMRI data with standard methods (see Finn 

t al. (2015) for more details) and parcellated into 268 nodes using 

 whole-brain, functional atlas defined in a separate sample (see 

reene et al. (2018) for more details). For the easy of validating the 

ask-related function key words, our classification focuses on task 

MRI in the HCP dataset. Task functional connectivity is calculated 

ased on the raw task time series: the mean time series of each 

ode pair were used to calculate the Pearson correlation and par- 

ial correlation. We define a weighted undirected graph with 268 

odes per individual per task condition resulting in 3542 = 506 × 7 

raphs in total. The same graph construction method as for the 

iopoint data is used. Hence, node feature h 

(0) 
i 

∈ R 

268 . 

.2. Experimental setup 

We trained and tested the algorithm on Pytorch in the Python 

nvironment using a NVIDIA Geforce GTX 1080Ti with 11GB GPU 

emory. The model architecture was implemented with 2 conv 

ayers and 2 pooling layers as shown in Fig. (2) , with param- 

ter N = 84 , K 

(0) = K 

(1) = 8 , d (0) = 84 , d (1) = 16 , d (2) = 16 , C = 2

or the Biopoint dataset and N = 268 , K 

(0) = K 

(1) = 8 , d (0) =
68 , d (1) = 32 , d (2) = 32 , C = 7 for HCP dataset. In our work, we
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Fig. 4. Comparison of Ra-GConv with vanilla-GConv and effect of coefficients of total loss in terms of accuracies on the validation sets. 
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et k in Eq 4 as half of nodes in that layer, namely the dropout

ate is 0.5. The motivation of K = 8 comes from the eight func- 

ional networks defined by Finn et al. (2015) , because these 8 net- 

orks show key brain functionality relevant to our tasks. 

We will discuss the variation of λ1 and λ2 in Section 3.3 . We 

rst hold 1/5 data as the testing set and then randomly split the 

est of the dataset into a training set (3/5 data), and a validation 

et (1/5 data) used to determine the hyperparameters. The graphs 

rom a single subject can only appear in either the training, valida- 

ion or testing set. Specifically, for the Biopoint dataset, each train- 

ng set contains 2070 graphs (69 subjects and 30 graphs per sub- 

ect), each validation set contains 690 graphs (23 subjects and 30 

raphs per subject), and the testing set contains 690 graphs (23 

ubjects, and 30 graphs per subject). For the HCP dataset, each 

raining set contains 2121 or 2128 graphs (303 or 304 subjects, 

nd 7 graphs per subject), each validation set contains 707 or 714 

raphs (101 or 102 subjects and 714 graphs per subject), and the 

esting set contains 690 graphs (102 subjects and 7 graphs per 

ubject). In this section, we use training and validation sets only 

o study λ1 and λ2 . Adam was used as the optimizer. We trained 

rainGNN for 100 iterations with an initial learning rate of 0.001 

nd annealed to half every 20 epochs. Each batch contained 400 

raphs for Biopoint data and 200 graphs for HCP data. The weight 

ecay parameter was 0.005. 

.3. Hyperparameter discussion and ablation study 

Hyperparameter discussion setup 

To check how the hyperparameters affect the performance, we 

une λ1 and λ2 in the loss function using the training and vali- 

ation sets. Recalling our intuition of designing TPK loss and GLC 

oss described in Section 2.4.0.3 , large λ1 (TPK loss) encourages 

ore separable node importance scores for selected and unse- 

ected nodes after pooling, and λ2 (GLC loss) controls the similar- 

ty of the nodes selected by different instances (hence controls the 

evel of interpretability between individual-level and group-level). 

mall λ2 would result in variant individual-specific patterns, while 

arge λ2 would force the model to learn common group-level pat- 

erns. As task classification on HCP could achieve consistently high 

ccuracy over the parameter variations, we only show the results 

n the Biopoint validation sets generated from five random splits 

n Fig. 4 . 

Ablation study setup To investigate the potential benefits of our 

roposed ROI-aware graph convolutional mechanism, we perform 

blation studies. Specifically, we compare our proposed Ra-GConv 

ayer with the strategy of directly learning embedding kernels W 

without ROI-aware setting), which is denoted as vanilla-GConv. 

Results We evaluate the best classification accuracy on the val- 

dation sets in the 5-fold cross-validation setting. Due to the ex- 

ensive cost involved in training deep learning models, we adopt 

n empirical way that first tunes λ2 with λ1 fixed to 0 or 0.1 and 

hen tunes λ given the determined λ . 
1 2 

7 
First, we investigate the effects of λ2 on the accuracy with λ1 

xed to 0. The results are shown in Fig.. We notice that the re- 

ults are stable to the variation of λ2 in the range 0–0.5. When 

2 = 1 , the accuracy drops. The accuracy reaches the peak when 

2 = 0 . 1 . As the other deep learning models behave, BrainGNN is 

verparameterized. Without regularization ( λ2 = 0 ), the model is 

asier to overfit to the training set, while large regularization of 

LC might result in underfitting to the training set. 

Second, we fix λ1 = 0 . 1 and varied λ2 again. As the results pre-

ented in Fig. b show, the accuracy drops if we increase λ2 after 

.2, which follows the same trend in Fig.. However, the accuracy 

nder the setting of λ2 = 0 is better than that in Fig.. This is prob-

bly because the λ1 terms can work as regularization and mitigate 

he overfitting issue. 

Last, we fix λ2 = 0 . 1 and vary λ1 from 0 to 0.5. As the results

n Fig. c show, when we increased λ1 to 0.2 and 0.5, the accuracy 

lightly dropped. 

For ablation study, as the results in Fig. 4 show, we can con- 

lude that Ra-GConv overall outperformed the vanilla-GConv strat- 

gy under all the parameter settings. The reason could be bet- 

er node embedding from multiple embedding kernels in the Ra- 

Conv layers, as the vanilla-GConv strategy treats ROIs (nodes) 

dentically and uses the same kernel for all the ROIs. Hence, we 

laim that Ra-GConv can better characterize the heterogeneous 

epresentations of brain ROIs. 

Based on the results of tuning λ1 and λ2 on the validation sets, 

e choose the best setting of λ1 = λ2 = 0 . 1 for the following base-

ine comparison experiments. We report the results on the held- 

ut testing set. 

.4. Comparison with baseline methods 

We compare our method with traditional machine learning 

ML) methods and state-of-the-art deep learning (DL) methods 

o evaluate the classification accuracy. The ML baseline methods 

ake vectorized correlation matrices as inputs, with dimension N 

2 , 

here N is the number of parcellated ROIs. These methods in- 

luded Random Forest (10 0 0 trees), SVM (RBF kernel), and MLP (2 

ayers with 20 hidden nodes). A variety of DL methods have been 

pplied to brain connectome data, e.g. long short term memory 

LSTM) recurrent neural network ( Dakka et al., 2017 ), and 2D CNN 

 Kawahara et al., 2017; Jie et al., 2020 ), but they are not designed

or brain graph analysis. Here we choose to compare our method 

ith BrainNetCNN ( Kawahara et al., 2017 ), which is designed for 

MRI network analysis. We also compare our method with other 

NN methods: GAT ( Veli ̌ckovi ́c et al., 2018 ), GraphSAGE ( Hamilton

t al., 2017 ), and our preliminary version PR-GNN ( Li et al., 2020 ).

t is worth noting that GraphSAGE does not take edge weights in 

he aggregation step of the graph convolutional operation. The in- 

uts of BrainNetCNN are correlation matrices. We follow the pa- 

ameter settings indicated in the original paper ( Kawahara et al., 

017 ). The inputs and the settings of hidden layer nodes for the 
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Table 2 

Comparison of the classification performance with different baseline machine learning models and state-of-the-art deep learning models. 

SVM Random Forest MLP BrainNetCNN GAT GraphSAGE PR-GNN BrainGNN 

Accuracy (%) 62.80(4.92) a 68.60(3.58) 58.80(1.79) 75.20(3.49) 77.40(3.51) 78.60(5.90) 77.10(8.71) 79.80(3.63) c 

F1 (%) 60.08(3.91) 63.97(4.95) 55.25(9.49) 65.58(14.48) 75.08(5.19) 75.55(7.03) 75.20(7.01) 75.80(6.03) 

Biopoint Recall (%) 60.20(4.49) 71.11(8.12) 61.00(4.85) 66.20(10.85) 71.60(6.07) 75.20(6.46) 78.26(10.28) 72.60(5.64) 

Precision (%) 60.00(3.81) 67.80(5.36) 53.40(12.52) 65.60(17.95) 79.40(8.02) 76.20(8.11) 76.50(14.32) 79.60(8.59) 

Parameter (k) b 3 3 138 1438 16 6 6 41 

Accuracy (%) 90.00(8.20) 90.20(4.15) 67.20(34.40) 90.60(4.04) 78.60(10.45) 89.80(12.51) 91.20(8.28) 94.40(4.04) ∗ d 

F1 (%) 90.20(5.81) 90.14(5.55) 63.49(41.80) 90.96(3.50) 77.00(11.58) 88.60(13.19) 91.09(8.35) 94.34(3.27) ∗

HCP Recall (%) 89.57(8.04) 90.06(7.35) 67.97(41.66) 91.12(4.13) 78.60(10.45) 89.43(12.43) 91.00(8.95) 94.29(3.73) ∗

Precision (%) 90.85(9.35) 90.22(4.77) 62.97(42.47) 90.81(3.27) 91.20(3.32) 87.80(14.02) 91.14(8.52) 94.40(3.59) ∗

Parameter (k) 36 36 713 4547 34 12 12 96 

a Classification accuracy, f1-score, recall and precision of the testing sets are reported in mean (standard deviation) format. b The number of trainable parameters of each 

model is denoted. c We boldfaced the results generated from our proposed BrainGNN. d ∗ indicates significantly outperforming ( p < 0 . 001 under one tail two-sample 

t-test) all the alternative methods. 
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raph convolution, pooling and MLP layers of the alternative GNN 

ethods are the same as BrainGNN. We also show the number of 

rainable parameters required by each method. We repeat the ex- 

eriment and randomly split independent training, validation, and 

esting sets five times. Hyperparameters for baseline methods are 

lso tuned on the validation sets and we report the results on the 

ve testing sets in Table 2 . 

As shown in Table 2 , we report the comparison results using 

our different evaluation metrics, including accuracy, F1-score, re- 

all and precision. We report the mean and standard deviation of 

he metrics on the five testing sets. We use validation sets to se- 

ect the early stop epochs for the deep learning methods. On the 

CP dataset, the performance of our BrainGNN significantly ex- 

eeds that of the alternative methods ( p < 0 . 001 under one tail

wo-sample t-test). On the Biopoint dataset, as data augmentation 

re performed on all the data points for the consistency of cross 

alidation and to improve prediction performance, we report the 

ubject-wise metric through majority-voting on the predicted la- 

el from the augmented inputs. BrainGNN is significantly better 

han most of the alternative methods ( p < 0 . 05 under one tail two-

ample t-test) except for the previous version of our own work, 

R-GNN and BrainGNN, although the mean values of all the met- 

ics are consistently better than PR-GNN and BrainNetCNN. The 

mprovement may result from two causes. First, due to the in- 

rinsic complexity of fMRI, complex models with more parameters 

re desired, which also explains why CNN and GNN-based meth- 

ds were better than SVM and random forest. Second, our model 

tilized the properties of fMRI and community structure in the 

rain network and thus potentially modeled the local integration 

ore effectively. Compared to alternative machine learning mod- 

ls, BrainGNN achieved significantly better classification results on 

wo independent task-fMRI datasets. Moreover, BrainGNN does not 

ave the burden of feature selection, which is needed in tradi- 

ional machine learning methods. Compared with MLP and CNN- 

ased methods, GNN-based methods require less trainable param- 

ters. Specifically, BrainGNN needs only 10 − 30% of the parameters 

f MLP and less than 3% of the parameters of BrainNetCNN. Our 

ethod requires less parameters and achieves higher data utility, 

ence it is more suitable as a deep learning tool for fMRI analysis, 

hen the sample size is limited. 

.5. Interpretability of BrainGNN 

A compelling advantage of BrainGNN is its built-in inter- 

retability: (1) on the one hand, users can interpret salient brain 

egions that are informative to the prediction task at differ- 

nt levels; (2) on the other hand, BrainGNN clusters brain re- 

ions into prediction-related communities. We demonstrate (1) in 

ection 3.5.1 - 3.5.2 and (2) in Section 3.5.3 . We show how our

ethod can provide insights on the salient ROIs, which can be 
8 
reated as disease-related biomarkers or fingerprints of cognitive 

tates. 

.5.1. Individual- or group-level biomarker 

It is essential for a pipeline to be able to discover personal 

iomarkers and group-level biomarkers in different application 

cenarios, i.e. precision medicine and disease understanding. In this 

ection, we discuss how to adjust λ2 , the parameter associated 

ith GLC loss, to manipulate the level of biomarker interpretation 

hrough training. 

Our proposed R-pool can prune the uninformative nodes and 

heir connections from the brain graph based on the learning tasks. 

n other words, only the salient nodes are kept/selected. We inves- 

igate how to control the similarity between the selected ROIs of 

ifferent individuals by tuning λ2 . As we discuss in Section 2.5 , 

arge λ2 encourages group-level interpretation (similar biomarkers 

cross subjects) and small λ2 encourages individual-level interpre- 

ation (various biomarkers across subjects). But when λ2 is too 

arge, the regularization might hurt the model accuracy (shown 

n Fig. 4 ). We put forth the hypothesis that meaningful interpre- 

ation is more likely to be derived from a model with high clas- 

ification accuracy, as suggested in Hancox-Li (2020) ; Adebayo 

t al. (2018) . Intuitively, interpretation is trying to understand how 

 model makes a right decision rather than a wrong one when 

earning from a good teacher. We take the model with the high- 

st accuracy for the interpretation experiment. Hence, the interpre- 

ation is restricted to models with fixed λ1 = 0 . 1 and varying λ2 

rom 0 to 0.5 according to our experiments in Section 3.3 . With- 

ut losing the generalizability, we show the salient ROI detection 

esults of 3 randomly selected ASD instances from the Biopoint 

ataset in Fig. 5 . We show the remaining 21 ROIs after the 2nd

-pool layer (with pooling ratio = 0.5, 25% nodes left) and cor- 

esponding pooling scores. As shown in Fig. 5 (a), when λ2 = 0 , 

overlapped areas” (defined as spatial areas where saliency val- 

es agree) among the three instances are rarely to be found. The 

arious salient brain ROIs are biomarkers specific to each individ- 

al. Many clinical applications, such as personalized treatment out- 

ome prediction or disease subtype detection, require learning the 

ndividual-level biomarkers to achieve the best predictive perfor- 

ance ( Brennan et al., 2019; Beykikhoshk et al., 2020 ). However, in 

ome other applications, such as understanding the general pattern 

r mechanism associated with a cognitive task or disease, group- 

evel biomarkers which highlight consistent explanations across in- 

ividuals are important ( Adeli et al., 2020; Venkataraman et al., 

016; Salman et al., 2019 ). We can increase λ2 to achieve such 

roup-level explanations. In Fig. 5 (b-c), we circle the big “over- 

apped areas” across the three instances. By visually examining the 

alient ROIs, we find three “overlapped areas” in Fig. 5 (b) and five 

overlapped areas” in Fig. 5 (c). 
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Fig. 5. Interpretation results of Biopoint task. The selected salient ROIs of three different ASD individuals with different weights λ2 associated with group-level consistency 

term L GLC . The color bar ranges from 0.1 to 1. The bright-yellow color indicates a high score, while dark-red color indicates a low score. The commonly detected salient ROIs 

across different individuals are circled in blue. 

Fig. 6. Interpretation results of Biopoint task. Interpreting salient ROIs (importance 

scores are denoted in colorbar) for classifying HC vs. ASD using BrainGNN. 
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.5.2. Validating salient ROIs 

To demonstrate the effectiveness of the interpreted salient ROIs, 

e compare the biomarkers with existing literature studies. We 

verage the node pooling scores after the 1st R-pool layer for all 

ubjects per class and select the top salient ROIs as biomarkers for 

hat class. 

In Fig. 6 , we display the salient ROIs (the top 21 ROIs, 21 =
4 × 0 . 5 × 0 . 5 , where 84 is the total number of ROIs, and 0.5 is

he pooling ratio of two R-pool layers) associated with HC and ASD 

eparately. Putamen, thalamus, temporal gyrus and insular, occip- 

tal lobe are selected for HC; frontal gyrus, temporal lobe, cingu- 

ate gyrus, occipital pole, and angular gyrus are selected for ASD. 

ippocampus and temporal pole are important for both groups. 

e name the selected ROIs as the biomarkers for identifying each 

roup. 
9 
The biomarkers for HC corresponded to the areas of clear deficit 

n ASD, such as social communication, perception, and execution. 

n contrast, the biomarkers for ASD map to implicated activation- 

xhibited areas in ASD: default mode network ( Buckner et al., 

008 ) and memory ( Boucher and Bowler, 2008 ). This conclusion is 

onsistent both with behavioral observations when administering 

he fMRI paradigm and with a prevailing theory that ASD includes 

reas of cognitive strengths amidst the social deficits ( Robertson 

t al., 2013; Turkeltaub et al., 2004; Iuculano et al., 2014 ). 

In Fig. 7 (a-g), we list the salient ROIs associated with the seven 

asks for the HCP dataset. We report the task-specific performance 

n HCP using BrainGNN in. To validate the neurological significance 

f the result, we used Neurosynth ( Yarkoni et al., 2011 ), a plat-

orm for fMRI data analysis. Neurosynth collects thousands of neu- 

oscience publications and provides meta-analysis that gives key- 

ords and their associated statistical images. The decoding func- 

ion on the platform calculates the correlation between the in- 

ut image and each functional keyword’s meta-analysis images. 

 high correlation indicates large association between the salient 

OIs and the functional keywords. We selected the names of the 

asks — ‘gambling’, ‘language’, ‘motor’, ‘relational’, ‘social’, ‘work- 

ng memory’ (WM) and ‘emotion’, as the functional keywords to 

e decoded. The heatmap in Fig. 8 illustrates the meta-analysis 

n functional keywords implied by the top salient regions corre- 

ponding to the seven tasks using Neurosynth. We define a state 

et, which is the same as the functional keywords set, as K = 

‘gambling’,‘language’, ‘motor’, ‘relational’, ‘social’, ‘WM’, ‘emotion’}. 

n practice, given the interpreted salient ROIs associated with a 

unctional state key ∈ K, we generate the corresponding binary 

OI mask. The mask is used as the input for Neurosynth analy- 
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Fig. 7. Interpretation results of HCP task. Interpreting salient ROIs (importance scores are denoted in color-bar) associated with classifying seven tasks. 

Fig. 8. The correlation coefficient decoded by NeuroSynth (normalized by dividing 

it by the largest absolute value of each column for better visualization) between 

the interpreted biomarkers and the functional keywords for each functional state. A 

large correlation (in red) along each column indicates large association between the 

salient ROIs and the functional keyword. Large values (in red) on the diagonal from 

left-bottom to right-top indicate reasonable decoding; especially a value of 1.00 on 

the diagonal means that the interpreted salient ROIs of the task state are most cor- 

related with the keywords of that state among all possible states in Neurosynth. 
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is, which generates a vector of association scores between salient 

OIs of key and all the keywords in K as shown in each row of 

ig. 8 . To facilitate visualization, we divide each value by the max- 

mum absolute value of each column for normalization. If the di- 

gonal value (from bottom left to top right) is 1, it indicates the 

nterpreted salient ROIs reflect its real task state. The finding in 

ig. 8 suggests that our algorithm can identify ROIs that are key to 
10 
istinguish between the 7 tasks. For example, the anterior tempo- 

al lobe and temporal parietal regions, which are selected for the 

ocial task, are typically associated with social cognition in the lit- 

rature ( Mar, 2011; Ross and Olson, 2010 ). It is worth noting that, 

ithout additional post-hoc interpretation methods, our BrainGNN 

ipeline can infer the connections between the salient ROIs as the 

mportant functional connectivity. We visualize the interactions be- 

ween the salient ROIs in. 

.5.3. Node clustering patterns in Ra-GConv layer 

From the best fold of each dataset, we cluster all the ROIs based 

n the kernel parameter α+ 
iu 

(learned in Eq. (3) ) of the 1st Ra- 

Conv layer, which indicates the membership score of region i for 

ommunity u . In our experiment, we set the number of commu- 

ity K = 8 . We show the node clustering results for the Biopoint 

nd HCP data in Fig. 9 and Fig. 9 respectively. For the clustering 

esults on the ASD classification task (shown in Fig. 9 ), we ob- 

erved the spatial aggregation patterns of each community, while 

he community clustering results on HCP task (shown in Fig. 9 ) do 

ot form similar spatial patterns. The different community cluster- 

ng results reveal that the brain ROI community patterns are likely 

ifferent depending on the tasks. Fig. 10 shows that the member- 

hip scores ( [ α+ 
iu 

] matrices) are not uniformly distributed across 

he communities and only one or a few communities have signif- 

cantly larger scores than the other communities for a given ROI. 

his corroborates the necessity of using different kernels to learn 

ode representation by forming different communities. We notice 

hat the [ α+ 
iu 

] matrices are overall sparse. Some ROIs are not part of 

ny community as they are associated with small coefficients α+ 
iu 

. 

amely, the messages or representation variance carried by these 
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Fig. 9. Clustering ROI using α+ 
i j 

from the 1st Ra-GConv layer. Different colors denote 

different communities. 

Fig. 10. Visualizing Ra-GConv parameter α+ ∈ R K×N 
≥0 

, which implies the membership 

score of an ROI to a community. K is the number of communities, represented as 

the vertical axis. We have K = 8 in our experiment. N is the number of ROIs, repre- 

sented as the horizontal axis. (a) is the α+ of Biopoint task, and N = 84 . (b) is the 

α+ of HCP task, and N = 268 . We split α+ of HCP task into three rows for better 

visualization (note ROI numbering on horizontal axes). 
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OIs are depressed. Thus, it is reasonable to use R-pool to select a 

ew representative ROIs to summarize the group-level representa- 

ion. 

. Discussion 

.1. The model 

Our proposed BrainGNN includes (i) novel Ra-GConv layers that 

fficiently assign each ROI a unique kernel that reflects ROI com- 

unity patterns, and (ii) novel regularization terms (unit loss, GLC 

oss and TPK loss) for pooling operations that regulate the model 

o select salient ROIs. It shows superior prediction accuracy for 

SD classification and brain states decoding compared to the alter- 

ative machine learning, MLP, CNN and GNN methods. As shown 

n Fig. 2 , BrainGNN improves average accuracy by 3% to 20% for 

SD classification on the Biopoint dataset and achieves average ac- 

uracy of 94 . 4% on a seven-states classification task on the HCP 

ataset. 

Despite the high accuracy achieved by deep learning mod- 

ls, a natural question that arises is if the decision making pro- 

ess in deep learning models can be interpretable. From the brain 

iomarker detection perspective, understanding salient ROIs asso- 

iated with the prediction is an important approach to finding 

he biomarkers: the salient ROIs could be candidate biomarkers. 

ere, we use built-in model interpretability to address the issue 

f group-level and individual-level biomarker analysis. In contrast, 

ithout additional post-processing steps, the existing methods of 
11 
MRI analysis can only either perform individual-level or group- 

evel functional biomarker detection. For example, general linear 

odel (GLM), principal component analysis (PCA) and indepen- 

ent component analysis (ICA) are group-based analysis methods. 

ome deterministic models like connectome-based predictive mod- 

ling (CPM) ( Shen et al., 2017; Gao et al., 2019 ) (a coarse model

veraging edge strengths over entire subject for prediction) and 

ther machine learning based methods provide individual-level 

nalysis. However, model flexibility for different-levels of biomark- 

rs analysis might be required by different users. For precision 

edicine, individual-level biomarkers are desired for planning tar- 

eted treatment, whereas group-level biomarkers are essential for 

nderstanding the common characteristic patterns associated with 

he disease. To fill the gap between group-level and individual- 

evel biomarker analysis, we introduce a tunable regularization 

erm for our graph pooling function. By examining the pairs of in- 

uts and intermediate outputs from the pooling layers, our method 

an switch freely between individual-level and group-level expla- 

ation by end-to-end training. A large regularization parameter for 

roup consistency encourages interpreting common biomarkers for 

ll the instances, while a small regularization parameter allows 

ifferent interpretations for different instances. However, the ap- 

ropriate parameters are study-specific and the suitable range can 

e determined using cross validation. It is worth noting that the 

ndividual-level biomarker mentioned in our work is not equiva- 

ent to single-subject interpretation, as our methods still require 

umerous participants for training the model. 

.2. Limitation and future work 

The pre-processing procedure performed in Section 3.1 is one 

ossible way of obtaining graphs from fMRI data, as demonstrated 

n this work. One meaningful next step is to use more powerful lo- 

al feature extractors to summarize ROI information. A joint end- 

o-end training procedure that dynamically extracts graph node 

eatures from fMRI data is challenging, but an interesting direc- 

ion. Also, in the current work, we only try a single atlas for each 

ataset. For ROI-based analysis, different atlases usually lead to dif- 

erent results ( Dadi et al., 2019 ). Considering reproducibility and 

onsistency ( Wei et al., 2002; Abraham et al., 2017 ), it is worth fur-

her investigating whether the classification and interpretation re- 

ults are robust to atlas changes. Although we discussed a few vari- 

tions of hyperparameters in Section 3.3 , more variations should 

e studied, such as pooling ratio, the number of communities, the 

umber of convolutional layers, and different readout operations. 

n future work, we will try to understand the interpretation from 

ailure cases and explore how the interpretation results can help 

mprove model performance. We will explore the potential bene- 

ts of using BrainGNN to improve GNN-based dynamic brain graph 

nalysis (i.e. Gadgil et al. (2020) ). Given the flexibility of GNN to 

ntegrate multi-modality data, we will investigate BrainGNN on 

iomarker detection tasks using an integration of multi-paradigm 

MRI data (i.e. Bai et al. (2020) ). We will explore the connections 

etween the Ra-GConv layers and the tensor decomposition-based 

lustering methods and the patterns of ROI selection and ROI clus- 

ering. For better understanding the algorithm, we aim to work on 

uantitative evaluations and theoretical studies to explain the ex- 

erimental results. 

. Conclusions 

In this paper, we propose BrainGNN, an interpretable graph 

eural network for fMRI analysis. BrainGNN takes graphs built 

rom neuroimages as inputs, and then outputs prediction results 

ogether with interpretation results. We applied BrainGNN on the 
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iopoint and HCP fMRI datasets. With the built-in interpretabil- 

ty, BrainGNN not only performs better on prediction than alterna- 

ive methods, but also detects salient brain regions associated with 

redictions and discovers brain community patterns. Overall, our 

odel shows superiority over alternative graph learning and ma- 

hine learning classification models. By investigating the selected 

OIs after R-pool layers, our study reveals the salient ROIs to iden- 

ify autistic disorders from healthy controls and decodes the salient 

OIs associated with certain task stimuli. Certainly, our framework 

s generalizable to analysis of other neuroimaging modalities. The 

dvantages are essential for developing precision medicine, un- 

erstanding neurological disorders, and ultimately benefiting neu- 

oimaging research. 
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