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Abstract

The normal compositional model (NCM) has been extensively used in hyperspectral unmixing.

However, previous research has mostly focused on estimation of endmembers and/or their variability,

based on the assumption that the pixels are independent random variables. In this paper, we show that this

assumption does not hold if all the pixels are generated by a fixed endmember set. This introduces another

concept, endmember uncertainty, which is related to whether the pixels fit into the endmember simplex.

To further develop this idea, we derive the NCM from the ground up without the pixel independence

assumption, along with (i) using different noise levels at different wavelengths and (ii) using a spatial

and sparsity promoting prior for the abundances. The resulting new formulation is called the spatial

compositional model (SCM) to better differentiate it from the NCM. The SCM maximum a posteriori

(MAP) objective leads to an optimization problem featuring noise weighted least-squares minimization

for unmixing. The problem is solved by projected gradient descent, resulting in an algorithm that

estimates endmembers, abundances, noise variances, and endmember uncertainty simultaneously. We

compared SCM with current state-of-the-art algorithms on synthetic and real images. The results show

that SCM can in the main provide more accurate endmembers and abundances. Moreover, the estimated

uncertainty can serve as a prediction of endmember error under certain conditions.
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I. INTRODUCTION

A. The linear mixing model

Hyperspectral image unmixing has received wide attention in the remote sensing, signal and

image processing communities [1], [2]. The widely researched model in this area is the linear

mixing model (LMM). Assume we have a hyperspectral image I (x) : D → RB where D ⊂

R2 is the image domain and B the number of wavelengths. LMM assumes that the spectral

measurement at each pixel yi ∈ RB, i = 1, 2, . . . , N (N being the pixel cardinality) is a non-

negative linear combination of the spectral signature of some pure materials, called endmembers,

mj = [mj1, . . . ,mjB] ∈ RB, j = 1, 2, . . . ,M (M being the number of endmembers). The

governing equation is

yi = MTαi + ni, with (1)

αij ≥ 0,
M∑
j=1

αij = 1, ∀i

where M := [m1, ...,mM ]T ∈ RM×B. αi := [αi1, ..., αiM ]T ∈ RM is the fractional abundance

map and satisfies the positivity and sum-to-one (simplex) constraints, and ni ∈ RB is a small,

additive perturbation (noise). As a result, the pixels generated by this model form a simplex in a

B-dimensional vector space whose vertices are the endmembers. Combining the above equation

for all the pixels, we have the following equation for the LMM:

Y = AM + N, (2)

where Y := [y1, . . . ,yN ]
T ∈ RN×B, A := [α1, . . . ,αN ]

T ∈ RN×M , and N := [n1, . . . ,nN ]
T ∈

RN×B.

The goal of the linear unmixing problem is to retrieve A and M given Y. This is an ill-posed

inverse problem as it can have an infinite number of solutions. Fig. 1 shows the difficulties

stemming from this underdetermined nature. In the figure, (a), (b) are 2 cases wherein the true

endmembers can not be estimated while (c) shows the only case where they can be estimated

under the assumption that the endmembers tightly surround the pixels. This has been extensively

used in the literature in the form of minimal volume [3], pure pixels [4], or pairwise closeness [5],

[6]. In Fig. 1(d), we show a different and interesting problem. It implies that spatial information

should be used in the unmixing process: if the pixels from an endmember set lie in one region

while those from the other set lie in a different region, the abundances in the intersection can

by easily identified by spatial location.
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Fig. 1. Difficulties in linear unmixing: m1, m2 are the endmembers that generate the pixel data; m′1, m′2 and m′′1 , m′′2 are the

possible endmembers that can be inferred from the data. (a) The pixels (gray area) generated by m1, m2 with α = (0.5, 0.5)T .

Not only can we infer m′1, m′2 or m′′1 , m′′2 that generate the same pixels, we can use the entire Euclidean space for the

endmembers. (b) The abundances α ranging from (0.7, 0.3) to (0.2, 0.8). Here, we can determine that the endmembers should

lie in a line that fits the pixels. However, we still cannot determine the specific position of the endmembers without other

information. (c) We have the information that the abundances range from (1, 0) to (0, 1). Now we can find the endmembers as

we are not only given the line, but also the relative position of the endmembers to the boundary of the pixels. (d) Suppose we

have two endmember sets, m1, m2 and m3, m4 and we can obtain them. How can we determine the abundances α of the

pixels in the intersection? Should it be a linear combination of m1 and m2 or of m3 and m4, or of all of them? However, if we

know the spatial location, we may identify them. For example, suppose the endmembers occupy 4 quadrants of the image where

m1, m2 occupy the top 2 quadrants while m3, m4 occupy the bottom 2 quadrants. The mixed pixels appear at the boundary

between two materials. Hence all the mixed pixels of m1, m2 appear in the top area while the mixed pixels of m3, m4 appear

in the bottom area. If we know where a pixel is located, we can decide if it belongs to m1, m2 or m3, m4.

B. Previous work

The methods developed to solve this problem may be mainly categorized into geometrical,

statistical and sparse regression based approaches [2]. Vertex component analysis (VCA) assumes

that the endmembers are present in the image pixels and finds them by projection [4]. Iterative

constrained endmembers (ICE) minimizes the least-squares error and the pairwise closeness

constraint [5]. Minimum volume constrained nonnegative matrix factorization (MVC-NMF)

minimizes the same error along with the squared value of the approximation to the volume formed

by the endmembers [3]. Graph regularized L1/2 nonnegative matrix factorization (GLNMF) [7],

[8] replaces the volume constraint by a graph regularizer and a sparsity promoting term. Finally,
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piecewise convex multiple-model endmember detection (PCOMMEND) clusters the data into a

collection of convex sets and simultaneously estimates endmembers and abundances for each set

[6].

Besides these methods that rely only on independent pixels, some recent work introduces

spatial information to aid the unmixing process [9], [10], [11], [12], [13]. For example, in [9],

two smoothness terms for abundances and endmembers were proposed to utilize the spatial

information in terms of wavelength proximity and pixel location. In [10], a Markov Random

Field (MRF) Potts-Markov model, was used to model the partitioning of the image which can

help the unmixing process. Sampling methods were used to infer the unknown parameters. In

[11], minimization of the L1 norm of the differences between neighboring abundances was

proposed to impose spatial correlation. In [12], a similar minimization of the L2 norm with

weights determined by the spectral angular distance was proposed under the rubric of weighted

nonnegative matrix factorization (WNMF). In recent work [13], spatial information was used to

generate an additional map to guide sparsity.

A different method category is based on modeling the likelihood using Gaussian density

functions, also known as the normal compositional model (NCM) [14], [15], [16], [17], [18].

The earliest application of NCM to hyperspectral unmixing can be traced back to [14], wherein a

maximum likelihood estimation (MLE) approach was presented for NCM endmember extraction.

In [15], [16], priors (mainly uniform distributions) were imposed on abundances and endmembers

with sampling methods used to maximize the posterior. They assumed the endmember spectra at

different wavelengths were independent (i.e. the endmember covariance matrices are diagonal)

and estimated one parameter of variability for each endmember. In [17], a more complex

NCM was proposed without the assumption of independence of endmember spectra at different

wavelengths. Particle swarm optimization based expectation-maximization was used to maximize

the log-likelihood. In [18], the image data were partitioned into several convex sets and NCM

was applied on each set.

C. Endmember uncertainty

Despite the voluminous previous work on unmixing, there is little previous research on

estimating the model uncertainty of the endmembers directly from the linear mixing model.

That is, given the pixel data and an estimated endmember set, the endmember estimates may

have residual uncertainty. For example, Fig. 2 shows 3 possible estimated endmember sets on a
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synthetic dataset when B = 2. We can expect the endmember set m1,m2,m3 to have a small

uncertainty since they fit the pixels very well. Allowing them to move around may ruin the

fitting. m′1,m
′
2,m

′
3 are located within the pixels. They should have a large uncertainty because

they can move around more freely to better fit the pixels. For m′′1,m
′′
2,m

′′
3, the uncertainty may

be small if we consider that they have already fitted the pixels very well.

Fig. 2. Model uncertainty of the estimated endmembers at different positions. Intuitively, m1,m2,m3 should have a small

uncertainty while the uncertainty of m′1,m′2,m′3 should be large. The uncertainty of m′′1 ,m′′2 ,m′′3 could be small if we consider

that all the pixels can still fit into them.

The above intuition implies that the uncertainty may reflect the error of endmembers. To

show how this intuition formally works in NCM, assume a simple case that an endmember

m ∈ R2 follows a Gaussian distribution centered at r ∈ R2 with covariance matrix Σ ∈ R2×2,

i.e. p (m) = N (m|r,Σ). Suppose m is given and r has been estimated with m 6= r. We

want to find Σ using maximum likelihood estimation (MLE). Maximizing p (m) is equivalent

to minimizing

− log p(m) =
1

2
log |Σ|+ 1

2
(m− r)T Σ−1 (m− r) .

Let Σ = Udiag (σ2
1, σ

2
2)UT , σ1 > 0, σ2 > 0 be the eigendecomposition. Then the minimization

problem above becomes

logσ1 + logσ2 +
1

2
σ−21 z21 +

1

2
σ−22 z22

where z := (z1, z2)
T := UT (m− r). When an eigenvector in U is not perpendicular to m− r,

i.e. z1 6= 0, z2 6= 0, the minimization can be achieved by setting the derivatives with respect to
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σ1 and σ2 to 0, which leads to σ1 = |z1| , σ2 = |z2|. However, this is not the global minimum

because if one eigenvector in U is perpendicular to m− r (the other being parallel), say z2 = 0,

z1 = ‖m− r‖, σ2 can be arbitrarily close to 0 such that logσ2 goes to negative infinity. Assume

σi ≥ ε for a small positive ε to make a solution exist, then the global minimum lies at σ1 =

‖m− r‖, σ2 = ε. Therefore, we can see that the MLE estimated matrix Σ has the square root

of its largest eigenvalue equal to ‖m − r‖ while its eigenvector is parallel to m − r. For our

formulation (2), assume M follows a Gaussian distribution with centers in R. We then propose

a fundamental question:

• Given Y, can we find the covariance matrices (uncertainty) that measure the difference

between the estimated endmembers R and the ground truth M?

If the answer is yes, we have the means via the chosen measure to predict the error without

knowing the ground truth. This paper attempts to find such covariance matrices.

The previous NCMs did not solve this problem. The covariance matrices from the previous

NCMs represent the endmember variability which arises from the assumption that the endmember

set used to linearly generate a pixel may vary with location due to illumination conditions, atmo-

spheric, environmental, temporal factors and intrinsic variability in a material [19]. We explain

the difference between these two concepts, uncertainty and variability, by first summarizing

the previous NCMs. Suppose the jth endmember follows a Gaussian distribution centered at

rj ∈ RB with covariance matrix Σj , i.e. p(mj) = N (mj|rj,Σj). Assuming the endmembers to

be independent, the random variable transformation (r.v.t.) yi = MTαi for each pixel suggests

that the probability density function of yi can be derived as

p(yi) = N

(
yi|RTαi,

M∑
j=1

α2
ijΣj

)
(3)

where R := [r1, ..., rM ]T ∈ RM×B. Then, NCM assumes the random variables {yi : i = 1, . . . , N}

are independent (henceforth referred to as pixel independence). The density function of Y is

then the product of the density functions of each component,

p(Y) =
N∏
i=1

p(yi) =
N∏
i=1

N

(
yi|RTαi,

M∑
j=1

α2
ijΣj

)

= N
(
vec
(
YT
)
|vec

(
(AR)T

)
, Σ′Y

)
, (4)

where Σ′Y ∈ RNB×NB is defined as

Σ′Y :=

[
δij

M∑
k=1

α2
ikΣk

]
. (5)
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We observe that p(Y) is another Gaussian distribution with a block diagonal covariance matrix.

The estimation of A, R and {Σj} are handled differently in different works.

To estimate the uncertainty however, we can not assume the pixels {yi} to be independent.

To see this, suppose B = 1. Then we have M ∈ RM , R ∈ RM , Y ∈ RN which are vectors

and the covariance matrix in (4) becomes an N by N diagonal matrix. The independence of

endmembers suggests that the density of M is

p(M) = N (M|R,Σ)

where Σ is an M by M diagonal matrix with each element being the variance of each endmember.

The r.v.t. Y = AM indicates that the density function of Y does not even exist. This is because

the domain of p(M) (RM ) is projected to a subspace of dimension M in RN , which has Lebesgue

measure 0 (then integrating p(Y) gives value 0). One way to make the density function exist is

to add noise, i.e., use equation (2). By assuming the noise to be Gaussian and independent at

each pixel, p(N) = N (N|0, µ2IN), we can see that the density function of Y becomes

p(Y) = N
(
Y|AR, AΣAT + µ2IN

)
where the covariance matrix is not a diagonal matrix, which indicates that the pixels are not

independent. The general case with B > 1 will be derived later.

D. Our contribution

In this paper, we solve the problem of estimating the model uncertainty by proposing a spatial

compositional model (SCM) based on NCM without assuming pixel independence while utilizing

spatial information on the abundances. Hence, the major contribution of this work is that we

propose the concept of endmember uncertainty which is related to error prediction, and present a

model that calculates the full likelihood to estimate it. Compared to previous NCMs and methods

with spatial information, our method also features: (i) a spatial term that integrates smoothness

and sparsity of abundances together; (ii) a model considering different noise levels at different

wavelengths and finally (iii) the integration of noise estimation, endmember uncertainty and

linear unmixing into a common framework. The final minimization problem can be solved by

an algorithm that not only provides the endmembers and abundances, but also the noise and the

uncertainty. An initial work that shows the benefits of the spatial prior used in the paper was

published in [20].
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Notation. Throughout the paper, SPD (n) denotes the set of n by n symmetric positive definite

matrices. We use the following notation for operations on a matrix A = [a1, ..., an]
T . We use

Tr (A), |A|, ‖A‖F , vec (A) to denote the trace, determinant, Frobenius norm and vectorization of

A respectively. The vectorization operator is defined by concatenating its columns, vec
(
AT
)
=[

aT1 , ..., a
T
n

]T . We use (A)ij to denote the extraction of the element at the ith row and jth

column by viewing A as a matrix, and use (A)i to denote the extraction of the ith row of A

and transposing it by viewing A as a vector (hence (A)i = ai). We use [aij] to denote a matrix

in which the element at the ith row, jth column is aij . So the matrix [δijai] = diag (a1, . . . , an)

is a diagonal matrix with diagonal elements {ai} by defining δij = 1 only when i = j and

0 otherwise. We use A ≥ 0 to denote that aij ≥ 0 given A = [aij]. The Kronecker product

between two matrices A and B is defined by A ⊗ B = [aijB] and the Hadamard product is

defined by A ◦B = [aijbij]. We use IN for the N by N identity matrix and 1N as an N by 1

vector consisting of all 1s.

II. THE SPATIAL COMPOSITIONAL MODEL

A. The hyperspectral image likelihood

We are interested in determining the uncertainty of the extracted endmembers. To achieve

this, we first model the density function of M, then use (2) to perform a r.v.t. to get the density

function of Y, and finally maximize the posterior given Y to find the parameters. Assuming

that the endmember mj follows a multivariate Gaussian centered at rj with covariance matrix

Σj , i.e.

p(mj|rj,Σj) = N (mj|rj,Σj) ,

and further assuming that the endmembers are independent, we have the conditional proba-

bility density function of the whole endmember set becoming the product of the independent

components:

p(M|R,Θ) = N
(
vec(MT )|vec(RT ), [δijΣj]

)
, (6)

where R := [r1, ..., rM ]T ∈ RM×B and Θ := {Σj : j = 1, . . . ,M} is the collection of covariance

matrices. Assume that the noise ni follows an independent zero mean, µ2
k variance Gaussian at

the kth wavelength, i.e.,

p (ni| {µk}) = N (ni|0, D) ,



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 9

where D := diag (µ2
1, µ

2
2, . . . , µ

2
B) is the covariance matrix. Also, since the noise is usually

independent at different locations, we have

p(N|D) = N
(
vec(NT )|0, IN ⊗D

)
. (7)

From the probability density functions in (6), (7), and the transformation vec
(
(AM)T

)
= (A⊗

IB)vec(MT ), the r.v.t. (2) indicates that the conditional probability density function of Y is

p(Y|R,Θ,A,D) = N
(
vec(YT )|rY,ΣY

)
, (8)

where rY ∈ RNB, ΣY ∈ RNB×NB are defined as

rY := (A⊗ IB)vec(RT )

= vec
(
(AR)T

)
,

ΣY := (A⊗ IB)[δijΣj](A⊗ IB)
T + IN ⊗D

=

[
δijD +

M∑
k=1

αikαjkΣk

]
. (9)

Note that compared to Σ′Y in (5), the covariance matrix in (9) is not a block diagonal matrix

implying that the hyperspectral pixels {yi : i = 1, . . . , N} are not independent.

B. Modeling the priors

We model the prior probability density of A by assuming that αi is a Markov random field

(MRF). That is, we treat the image grid as an undirected graph G = (V , E) where V is the set of

graph nodes and E is the set of edges. The density of the whole grid can be modeled based on

a potential function of the neighboring nodes. Considering that neighboring pixels with similar

spectra are more likely to be the same mixture of materials, the prior probability density of A

can be assumed to be in favor of smooth assignment of αi to all these pairs of pixels.

Driven by this intuition, the prior probability density of A is modeled as

p(A) =
1

Z
exp

{
−β1

4

N∑
i=1

N∑
j=1

wij‖αi −αj‖2
}

=
1

Z
exp

{
−β1

2
Tr
(
ATLA

)}
, (10)

where wij controls the spatial intimacy between node i and node j given by

wij =

e
−‖yi−yj‖2/2Bη2 , if (i, j) ∈ E

0, otherwise
.
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L := [δij
∑

k wik] − [wij] ∈ RN×N is the well known symmetric positive semidefinite graph

Laplacian matrix [21]. Z =
∫
exp

{
−β1

2
Tr
(
ATLA

)}
dA is the partition function such that

the integration of p (A) is 1. Since the partition function is a constant and does not affect the

objective function derived later, we will ignore it henceforth.

In practice, a region may contain only one pure material, which means the abundance maps

for many pixels are concentrated on a single component, e.g., αij = 1, αik = 0 for k 6= j.

This suggests that A may have a higher prior probability for each αi being sparse. A common

sparsity promoting technique is to minimize the L1 norm on αi, which is not applicable here due

to the sum-to-one constraint. A previous work uses the L1/2 norm
∑

i,j α
1/2
ij to promote sparsity

[22]. However, the non-smooth objective requires us to take subgradients which we would prefer

to avoid. Here, we introduce a quadratic form ‖αi‖2, which by itself is not sparsity promoting,

but does have that effect when maximized subject to the simplex constraint. Fig. 3 shows the

sparsity promoting effect if we want to maximize ‖αi‖2 subject to the simplex constraint when

M = 2. For M > 2, a similar result can be achieved. Hence, we can add
∑

i ‖αi‖2 to (10) and

have a prior probability defined as

p (A) ∝ exp

{
−β1

2
Tr
(
ATLA

)
+
β2
2

Tr
(
ATA

)}
= exp

{
−β1

2
Tr
(
ATKA

)}
, (11)

where K := L− β2
β1

IN if β1 6= 0.

The parameters rj can also be assumed to be drawn from suitable prior distributions. From the

analysis of Fig. 1, to obtain a unique solution, we assume that the endmembers should tightly

surround the mixed pixels. To achieve this goal, we introduce a joint prior on R and D as

p (R,D) ∝ exp

{
−ρ
4

M∑
i=1

M∑
j=1

(ri − rj)
T D−1 (ri − rj)

}

= exp
{
−ρ
2

Tr
(
RTHRD−1

)}
(12)

where H ∈ RM×M is the corresponding Laplacian matrix (H has -1 everywhere except for

diagonal terms taking the value M −1). The prior will be in favor of endmembers that are close

to each other. The significance of using the Mahalanobis distance over the traditional distance

‖ri− rj‖ is to selectively calculate the pairwise closeness term from the bands not corrupted by

the noise. Suppose some bands have larger noise than the others. Then they do not contribute

as much to this value as bands with smaller noise. However, the prior will introduce a bias on
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Fig. 3. The sparsity promoting effect of maximizing ‖αi‖2 subject to the simplex constraint when M = 2. The black line

segment in the plane z = 0 is the simplex constraint. The red line on the paraboloid is the projected values of ‖αi‖2 from the

simplex. Maximizing ‖αi‖2 will lead to solutions corresponding to the extreme ends of the simplex (sparse solution).

the estimation of the noise D as it will prefer large noise. Since it is controlled by a parameter

ρ, we can assume the bias vanishes when ρ is sufficiently small.

C. Maximizing the posterior

From the prior probability density in (11), (12) and the conditional probability density in (8),

we invoke Bayes’ theorem to get the posterior probability density used subsequently in posterior

maximization, i.e.

p(R,Θ,A,D|Y) ∝ p(A)p(R,D)p(Y|R,Θ,A,D)

where p(Θ) and p(Y) are assumed to follow uniform distributions. Maximizing log p (R,Θ,A,D|Y)

is equivalent to minimizing E (R,Θ,A,D) as

E =vec
(
(Y −AR)T

)T
Σ−1Y vec

(
(Y −AR)T

)
+ log |ΣY|

+ β1Tr
(
ATKA

)
+ ρTr

(
RTHRD−1

)
(13)

where ΣY is given in (9). Notice that the first term in (13) involves inversion of a large non-

sparse NB by NB matrix, which is computationally expensive. We now describe methods to

reduce the complexity.
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Using the Woodbury identity (see Theorem 18.2.8, p. 424 of [23]), Σ−1Y becomes

Σ−1
Y =

(
IN ⊗D + (A⊗ IB)[δijΣj ](A⊗ IB)

T
)−1

= (IN ⊗D)
−1 − (IN ⊗D)

−1
(A⊗ IB){

[δijΣj ]
−1

+ (A⊗ IB)
T
(IN ⊗D)

−1
(A⊗ IB)

}−1

(A⊗ IB)
T
(IN ⊗D)

−1

= IN ⊗D−1 −
(
A⊗D− 1

2

)
Q−1

(
A⊗D− 1

2

)T
, (14)

where Q ∈ RMB×MB, Sj ∈ RB×B are defined as

Q :=
[
δijD

1
2 Σ−1j D

1
2

]
+ ATA⊗ IB

= [δijSj] + ATA⊗ IB, (15)

and

Sj := D
1
2 Σ−1j D

1
2 , j = 1, . . . ,M. (16)

Note that ATA ⊗ IB is a positive semidefinite matrix and therefore Q ∈ SPD (MB) (Σj ∈

SPD (B)). Plugging (14) into the first term of the objective function leads to

vec
(
(Y −AR)T

)T
Σ−1Y vec

(
(Y −AR)T

)
= vec

(
(Y −AR)T

)T (
IN ⊗D−1

)
vec
(
(Y −AR)T

)
−zTQ−1z

= ‖D−
1
2 (Y −AR)T ‖2F − zTQ−1z, (17)

where z ∈ RMB denotes

z :=
(
A⊗D−

1
2

)T
vec
(
(Y −AR)T

)
= vec

(
D−

1
2 (Y −AR)T A

)
. (18)

From the matrix determinant lemma (see Theorem 18.1.1, p. 416 of [23]), the logarithm term

log |ΣY| becomes

log
∣∣∣IN ⊗D + (A⊗ IB) [δijΣj] (A⊗ IB)

T
∣∣∣

= log
∣∣∣[δijΣj]

−1 + (A⊗ IB)
T (IN ⊗D−1

)
(A⊗ IB)

∣∣∣
|[δijΣj]| |IN ⊗D|

= log
∣∣∣IM ⊗D−

1
2

∣∣∣2 |Q| |[δijΣj]| |IN ⊗D|

= log |Q| − log |[δijSj]|+N log |D| . (19)
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Combining the results in (17) and (19), minimizing (13) becomes equivalent to minimizing

E1 (R,A,D, {Sj}) defined as

E1 = ‖D−
1
2 (Y −AR)T ‖2F − zTQ−1z + log |Q|

− log |[δijSj]|+N log |D|+ β1Tr
(
ATKA

)
+ρTr

(
RTHRD−1

)
(20)

subject to

A ≥ 0, A1M = 1N , R ≥ 0, Sj ∈ SPD (B) (21)

where Q, z and Sj are defined in (15), (18) and (16) respectively. Note that letting Σj → 0 (i.e.

there is little endmember uncertainty) will result in zTQ−1z vanishing as Sj tends to infinity, and

log |Q| canceling log |[δijSj]| as [δijSj] dominates Q. For this special case, the entire objective

function reduces to the noise weighted least-squares objective.

D. Optimizing the objective function

We show in Appendix A that zTQ−1z and log |Q|− log |[δijSj]| are positive and are negligible

compared to ‖D− 1
2 (Y −AR)T ‖2F when A, R, D are close to the ground truth. This gives us

another objective function E2 (R,A,D) that is independent of {Sj}:

E2 = ‖D−
1
2 (Y −AR)T ‖2F +N log |D|

+β1Tr
(
ATKA

)
+ ρTr

(
RTHRD−1

)
, (22)

to be minimized subject to the constraints of A, R in (21). We will first minimize (22) with

respect to A, R, D and then minimize (20) with respect to D, {Sj} given the obtained A, R.

Note that both objectives require optimization over convex sets (A is restricted to the Cartesian

product of simplices, Sj is restricted to the convex cone of positive definite matrices) and so

gradient projection methods can be used to solve these kinds of problems (please see Section

2.3 in [24]).

Possessed with an initial condition, we can alternate between updates of A, R and D to

reduce the energy. Taking the derivative of (22) with respect to A, we have

∂E2
∂A

= 2
(
−YD−1RT + ARD−1RT + β1KA

)
. (23)
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The gradient projection method sets the value of the next iteration, An+1, to be the projected

value of the steepest descent

An+1 = φ

(
An − τn∂E2

∂A
(Rn,An,Dn)

)
, (24)

where

φ : X 7→ arg min
Y∈RN×M

‖X−Y‖2F s.t. Y ≥ 0, Y1M = 1N

projects a matrix to the nearest matrix that satisfies the simplex constraint (e.g. we use the

algorithm in Fig. 1 of [25]). τn > 0 is the step size and is set by 1D minimization or the

familiar Armijo rule (Section 2.2.1 in [24]). It is shown that the sequence generated by (24)

is gradient related, i.e.
〈
∂E2
∂A

(Rn,An,Dn) ,An+1 −An
〉
< 0 (Proposition 2.3.1 in [24]), which

leads to a stationary point given proper step sizes τn such as exact line minimization [26],

τn = argmin
τ≥0
E2
(

Rn, φ

(
An − τ ∂E2

∂A

)
,Dn

)
.

Numerically, we can use adaptive step sizes that start with a small step and gradually increase

it by an order of magnitude until E2 starts increasing. Similar gradient descent methods were

proposed in [27], [28], and it is shown that such methods have a faster convergence rate than

those based on multiplicative update rules [7], [8].

Once we have updated A, we can update R by finding a new value that reduces (22). A gradient

projection method can also be used for R because of the positivity constraint. However, the

spatial smoothness and sparsity promoting term, Tr
(
ATKA

)
, along with the pairwise closeness

term actually make R seldom negative even when just using a closed form solution. Taking the

derivative of (22) with respect to R, we have

∂E2
∂R

= 2
(
−ATYD−1 + ATARD−1 + ρHRD−1

)
.

Letting ∂E2
∂R

= 0, we obtain a closed form solution for R that ignores the positivity constraint,

R =
(
ATA + ρH

)−1
ATY. (25)

Then we need to update D to further reduce the energy. Considering that D := diag (µ2
1, µ

2
2, . . . , µ

2
B),

we take the derivative of (22) with respect to each µk and set ∂E2
∂µk

= 0. The solution turns out

to be

µ2
k =

1

N

{
N∑
i=1

(Y −AR)2ik + ρ
(
RTHR

)
kk

}
, ∀k. (26)
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Given an initial condition, we can alternate between updates of A, R and D based on (24),

(25) and (26) respectively. The details are given in the first two steps of Algorithm 1. Since the

energy is lowered at each step, it is assumed that energy minimization leads to convergence.

Note that the estimated D above is biased. The intuition of 1
N

∑
i (Y −AR)2ik is straightfor-

ward for estimating the noise at the kth band. The additional term ρ
(
RTHR

)
kk

exists because

of our prior in (12), which will prefer larger noise. Hence we should ignore this term by setting

ρ = 0 for estimating the noise. Also, when it comes to finding D, {Sj} (hence Σj), we should

resort to the original objective function (20). Taking the derivative of (20) with respect to D

(µk) and setting it to 0 is a little complicated, so we leave the details to Appendix B and merely

show the result here. Let dk := µ−1k and d := [d1, . . . , dB]
T . The solution for minimizing (20)

with respect to d is a nonlinear system of equations given by

1

N

(
E− FTQ−1F

)
d =

[
d−11 , . . . , d−1B

]T
, (27)

where E ∈ RB×B, F ∈ RMB×B are defined as

E := diag

{
N∑
i=1

((Y −AR) ◦ (Y −AR))i

}
, and (28)

F :=
[
diag

{(
AT (Y −AR)

)
1

}
, . . . , diag

{(
AT (Y −AR)

)
M

}]T
. (29)

According to Appendix A, when A, R are sufficiently accurate, zTQ−1z is small compared to

‖D− 1
2 (Y −AR)T ‖2F , hence the term FTQ−1F can be ignored and 1

N
Ed =

[
d−11 , . . . , d−1B

]T is

equivalent to (26). However, when A, R are not accurate enough, the solution in (26) could be

much larger than the true noise, in which case FTQ−1F slightly compensates for the bias.

Using the chain rule in matrix form to take the derivative of (20) with respect to Sj , we have

∂E1
∂Sj

=
(
Q−1zzTQ−1

)
jj
+
(
Q−1

)
jj
− S−1j , (30)

where (·)jj denotes the extraction of the jth diagonal B by B block of the MB by MB matrix.

We use alternating updates on D and Sj to minimize (20) while keeping A, R fixed. To update

Sj , a gradient projection method similar to (24) can be used, where the projection onto the set

of positive definite matrices is obtained by truncating the eigenvalues [29]. The details are given

in Step 3 of Algorithm 1.

Remark 1. The choice of free parameters should be invariant with respect to the changing

magnitudes of each term in (22) for different N , M and B. For example, the first term in

(22) has a magnitude of NB. From the banded diagonal nature of [wij] in (11), Tr
(
ATLA

)



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 16

Algorithm 1 The SCM implementation

Input: Y = [y1, ...,yN ]
T , M , β1, β2, ρ.

• Step 1: Set β1 ← B
M
β1, β2 ← B

M
β2, ρ← N

M2ρ. Construct the matrices K, H.1

• Step 2: Initialize R to be the centers of M clusters of Y obtained by fuzzy C-means.2

Initialize A = φ
(
YRT

(
RRT + 10−6IM

)−1), where φ : RN×M → RN×M is the projection

function for A.3 Initialize D by µ2
k =

1
N

∑N
i=1 (Y −AR)2ik. Solve A, R by repeating the

following three steps until convergence.

– Update A by φA (τ) := φ
(
A− τ ∂E2

∂A

)
, where ∂E2

∂A
is given in (23). If

E2 (R, φA (ε) ,D) < E2 (R,A,D), τ is successively set to 10iε, i = 0, 1, 2, ... until

E2 (R, φA (10i+1ε) ,D) ≥ E2 (R, φA (10iε) ,D), otherwise set to zero.

– Update R by (25).

– Update D by (26).

• Step 3: Initialize µ2
k = 1

N

∑N
i=1 (Y −AR)2ik, Σj = 0.12IB, Sj = D

1
2 Σ−1j D

1
2 . Let ψ :

RB×B → RB×B be the projection function for Sj
3. Solve D, {Sj} by repeating the following

two steps until convergence.

– Update Sj by ψj (τj) := ψ
(
Sj − τj ∂E1∂Sj

)
for j = 1, ...,M , where ∂E1

∂Sj
is given in (30).

The step size τj is determined in a similar fashion to the A update in step 2.

– Update D by solving (27) numerically with initial condition dk =(
1
N

∑N
i=1 (Y −AR)2ik

)− 1
2
.

Output: A, R, D, Σj = D
1
2 S−1j D

1
2 .

has a magnitude of NM . So the parameter β1 should be scaled by β1 ← β1B/M . Similarly,

the parameters β2, ρ should be scaled accordingly. When constructing L, we use η = 0.05 for

calculating [wij]. When constructing K = L− β2
β1

IN , we set β1 ← max (β1, 10
−9) to prevent β1

from becoming zero.

Remark 2. The initial endmembers are important in endmember estimation. Randomly picking

pixels as endmembers or deploying fast algorithms such as VCA may provide an initial estimate.

We find that fuzzy C-means [30] works well in practical applications. This could be due to the

fact that it can cluster the pixels close to the endmembers while being resilient to the highly

mixed pixels.

Remark 3. The projection function φ for A is defined as φ (A) = [max (αij − θi, 0)] where
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θi =
1
Ki

(∑Ki

k=1 α
′
ik − 1

)
. α′i1 ≥ ... ≥ α′iM are sorted versions of αi1, ..., αiM , Ki is the largest k

such that α′ik− 1
k

(∑k
l=1 α

′
il − 1

)
> 0 [25]. The projection function ψ for Sj is defined as ψ (X) =

D
1
2 U
[
δij min

(
max (λi, σ−2max) , σ

−2
min

)]
UTD

1
2 where U [δijλi]U

T is the eigendecomposition of

D−
1
2 XD−

1
2 [29]. The eigenvalues of Σj are constrained to lie within [σ2

min, σ
2
max] with σmin =

10−9, σmax = 1 so that they cannot become negative and Sj cannot go to infinity.

III. RESULTS

In the experiments, all the algorithms were implemented in MATLAB R©. For endmember

extraction, we compared the following algorithms:

(1) SCM is implemented according to Algorithm 1 and publicly available.1

(2) An NCM that assumes pixel independence is used in [15], [17], [14] with different

optimization approaches where one of the goals was endmember variability. We considered the

objective function − log p (Y) (with p (Y) defined in (4)) with a pairwise closeness constraint

on the centers of the Gaussians. We implemented the optimization algorithm using standard

projected gradient descent.

(3) PCOMMEND [6] assumes the endmembers are divided into subsets and hence promotes

sparsity. It is shown to work well on the Pavia University dataset.2

(4) GLNMF treats the pixels as a manifold and constructs a k-neighborhood graph to aid

unmixing [7], [8]. It also uses L1/2 norm on the abundances to promote sparsity. We implemented

it by using the multiplicative update rules in [8].

(5) WNMF minimizes a combination of the graph based spatial constraint and a least-squares

term [12]. The graph is constructed by considering a first order neighborhood with a decreasing

function of spectral angular distance as weights. This was re-implemented.

The above implemented algorithms have the same initialization as SCM to ensure a fair

comparison (with PCOMMEND directly obtained from the authors). The parameters for all

the methods are determined by a greedy algorithm that works as follows. Suppose we have 3

parameters to tune and the step size is (10, 10, 10). With (1, 1, 1) as the starting parameter

set, the algorithm searches its 6 neighbors (0.1, 1, 1), (10, 1, 1), (1, 0.1, 1), (1, 10, 1), (1, 1,

0.1), (1, 1, 10) and runs the method to find the parameter set with least error. Then it moves

1The code is available on GitHub (https://github.com/zhouyuanzxcv/Hyperspectral).
2The code is available on Alina Zare’s PCOMMEND GitHub page (https://github.com/TigerSense/PCOMMEND/).

https://github.com/zhouyuanzxcv/Hyperspectral
https://github.com/TigerSense/PCOMMEND/
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to that point and continues the process until it finds a point that has lower error than all the

neighboring points. For the synthetic dataset, we use a step size (10, 10, 10) on a synthetic

image with medium noise to determine the optimal parameters for each method. For the two

real datasets, we use a step size (2, 2, 2) and round the resulting parameter to the nearest 1, 2,

5 with the same order of magnitude.

Throughout the experiments, we use the mean of absolute difference as the error of abundances

or endmembers, i.e.,

EA =
1

NM

∑
i,j

|αij − αGTij |, (31)

Emj
=

1

B

∑
k

|mjk −mGT
jk |, EM =

1

M

∑
j

Emj
, (32)

where αGTij and mGT
jk are the ground truth abundance and endmember values respectively. In the

case of real datasets where not all the ground truth abundances are available, EA is calculated

only on the identified pure pixels. The results from algorithms were permuted to match the

ground truth for calculating the error.

To measure and visualize the uncertainty from {Σj}, recall that the covariance matrix of a

Gaussian distribution determines its shape, i.e. the eigenvectors are the directions of the variation

patterns while the eigenvalues are the variances of the projected (onto the eigenvectors) 1D

data points. The uncertainty can be measured by the largest eigenvalue and its corresponding

eigenvector. We use the square root of the largest eigenvalue, σ, as the uncertainty amount since

it corresponds to the standard deviation. Then, the corresponding eigenvector (normalized), u,

can be viewed as the uncertainty direction. Given the estimated endmember r, the uncertainty

range can be visualized by two curves r± 2σu.

A. Synthetic images

We first test SCM on synthetic images of size 40 by 40 generated from the true material spectra

in the ASTER spectral library [31]. Six rocks—basanite, basalt, quartzite, dacite, rhyolite and

limestone are picked as endmembers from the ASTER library in the experiments (with their

spectra shown in Fig. 4(a) with wavelengths ranging from 0.4µm to 14µm and discretized into

200 values). The abundance maps are created randomly in the following way. Suppose basanite

is the background material, the other materials are randomly spawned on this background. For
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the jth material, 200 blobs are generated and their locations follow a Gaussian distribution

N
(
x|cj, σ2

pI2
)

(cj, j = 1, . . . , 4 are the centers of the 4 quadrants and c5 is the center of the

image). Each blob imposes an abundance bump with the shape of a GaussianN (a|x, s2I2) where

the width s is also randomly sampled from a univariate Gaussian distribution N (s|1.5, 0.52)

to promote more irregularity. Then the background abundance map is obtained by subtracting

the sum of these 5 generated abundances from 1, which usually does not lead to a pure

pixel. An example of generated abundance maps is shown in Fig. 4(c). After the signals are

created by linearly mixing the endmembers and abundances, we add the noise generated by

N (n|0, diag (µ2
1, . . . , µ

2
B)), where each µk is again sampled from a uniform distribution on the

range [0, σY ] such that each band has a different noise level. An example of a generated image

is shown in Fig. 4(b).

Fig. 4. (a) Spectral signatures of the 6 endmembers used to generate synthetic images. (b) RGB image (using wavelength 488nm

for blue, 556nm for green, 693nm for red) from a sample image with σY = 0.0016. (c) Abundance maps used to generate the

image in (b).

For endmember extraction, we compared all the methods based on 10 noise levels, σY ranging
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from σY = 0.0001 to σY = 0.0512. 20 random images were generated in each case such that

the average error (excluding the worst 3 results) can be calculated. The parameters of SCM

were β1 = 10, β2 = 10 ρ = 0.001. Fig. 5 shows the errors of all the algorithms. From the

plots, we can see that SCM has lower errors than the other methods for all the noise levels, with

respect to both endmembers and abundances. The advantage could arise from our noise weighted

least-squares term as the synthetic images feature different noise levels at different wavelengths.
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Fig. 5. Error of endmembers and abundances based on the synthetic images. The value at each noise level is the average of

errors in (31) and (32) on 20 random images (excluding the worst 3 results).

For uncertainty estimation, we compared the uncertainties of different estimated endmembers

for the image in Fig. 4. To achieve this, we changed the value of ρ from large to small gradually.

This causes the location of the estimated endmembers to change from being close together

inside the pixel cloud to sparsely scattered outside. We average the uncertainty amounts of

all endmembers to represent the whole uncertainty. Fig. 6 shows this value along with the

error of endmembers versus decreasing ρ. The error of endmembers has its minimum in the

middle between 10−3 and 10−4. Interestingly, this is also the place where the uncertainty amount

starts to decrease to a stable value (nearly 0). This corresponds to the intuition that when the

endmembers are outside the pixel cloud (i.e. ρ is small), all the pixels can be well represented

by the endmembers thus having a low uncertainty. When the endmembers are inside, the more

they are closely packed together, the more the uncertainty as more pixels are beyond their

representational capabilities. Recalling our fundamental question about error prediction, the result

here implies that it is applicable in terms of amount (when endmembers are close inside).

Fig. 7 shows the uncertainty ranges of close endmembers when ρ = 0.1. Fig. 6 implies that

the endmembers are actually inside the pixel cloud since ρ is greater than the optimal value.

We can see that not only does the uncertainty amount reflect the distance to the ground truth,
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Fig. 6. Effect of pairwise closeness (ρ) on the mean uncertainty amount (blue solid line, scale on the left) and the error of

endmembers (red dashed line, scale on the right) for the image in Fig. 4. The minimal error corresponds to the starting point

where the uncertainty amount drops to zero.

the uncertainty direction also reflects the distortion of the estimated endmembers. Combining

these pieces of information, the uncertainty range is able to cover the ground truth for nearly

all of them, except the first material basanite with insufficient uncertainty range to the ground

truth, which could be caused by the lack of pure pixels. Therefore the uncertainty estimated can

serve as a prediction of the endmember error in this case, given endmembers estimated with a

sufficient closeness constraint.

B. Pavia University

The SCM algorithm was applied on the Pavia University dataset, which was recorded by the

Reflective Optics System Imaging Spectrometer (ROSIS) during a flight over Pavia, northern

Italy. It is a 340 by 610 image with 103 bands with wavelengths ranging from 430nm to 860nm.

The real spacing is 1.3 meters/pixel. The image covers both natural and urban areas as shown

in Fig. 8(a). There are 9 materials identified as ground truth (shown in Fig. 8(b)). From these

pure pixels, average spectra for each material are used as the ground truth endmember signature.

Fig. 8(c) shows the ground truth endmembers, from which we find that self-blocking bricks and

gravel have very similar spectra, and so do asphalt and bitumen. In this unsupervised unmixing

setting, an automated algorithm may distinguish at most 7 endmembers (and indeed in previous

research such as [6], only 6 endmembers were estimated).
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Fig. 7. Uncertainty ranges of endmembers estimated with ρ = 0.1 for the image in Fig. 4. The uncertainty ranges nearly cover

the ground truth endmembers.

We executed all the methods on this dataset with 7 endmembers (PCOMMEND with 6

endmembers as suggested in [6]). The parameters for SCM are β1 = 5, β2 = 10, ρ = 0.05.

Two materials, gravel and bitumen, are excluded in the comparison because they are attributed

to self-blocking bricks and asphalt respectively. Fig. 9 shows the abundance maps of all the

methods. When compared to the ground truth in Fig. 8(b), we can see that the result of SCM

matches the identified pure pixels best. The second best abundance maps are from GLNMF,

which could be attributed to its sparsity promoting term. WNMF also has a somewhat nice

result despite the fact that some materials, like painted metal sheets, are not obvious. NCM

only shows asphalt, trees, painted metal sheets and shadows meaningfully while the others are

difficult to identify.

Fig. 10 shows the resulting endmember spectra from all the methods. We also computed the

errors for these endmembers and the result is shown in Table I. From these results, we see

that SCM performed best overall. The worst estimated endmember of SCM is painted metal

sheets and this is due to the complex nature of this dataset wherein objects other than the
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Fig. 8. (a) RGB image for Pavia University and (b) the ground truth pure pixels of 9 materials (each colored region corresponds

to a material and the unidentified pixels are left in white). (c) Ground truth spectra obtained by averaging the pure pixels for

each endmember. Asphalt and bitumen (gravel and self-blocking bricks) have similar spectral signatures.

identified 9 materials are present. The abundance maps of SCM show that SCM identified painted

metal sheets, some sidewalks, and some other types of roof as one endmember, hence mixed

their spectra as this endmember. Also, since there are not many pixels of painted metal sheets,

the result is strongly biased. Since we are performing unsupervised unmixing, it is difficult to

distinguish these additional objects.

The uncertainty ranges of endmembers from SCM are shown in Fig. 11. We see that for

the well estimated endmembers, the uncertainties are so small that the endmembers coincide

with the uncertainty ranges. For the biased endmember of painted metal sheets, the uncertainty

is also large such that it nearly covers the ground truth. For the trees and shadows, the SCM

estimated endmembers deviate from the ground truth at the right end and the uncertainty ranges

also feature a large gap at the right end.
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Fig. 9. Abundance maps for Pavia University. The identified materials are asphalt (bitumen), meadows, trees, painted metal

sheets, bare soil, self-blocking bricks (gravel), shadows respectively. The abundance errors (calculated by Eq. (31) on those

identified pure pixels) for these 5 methods are 0.0864, 0.2257, 0.1533, 0.1219, 0.1499 respectively.

C. Mississippi Gulfport

The dataset was collected over the University of Southern Mississippi’s-Gulfpark Campus

[32]. It has 72 bands corresponding to wavelengths 0.368µm to 1.043µm. The spatial resolution

is 1 meter/pixel. The scene contains several man-made and natural materials including sidewalks,

roads, various types of building roofs, concrete, shrubs, trees, and grasses. We selected the bottom

right corner region (185 by 89 pixels) as our dataset, which contains 6 materials. Fig. 12 shows
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Fig. 10. Qualitative comparison of endmembers for Pavia University.

TABLE I

QUANTITATIVE COMPARISON OF ENDMEMBERS FOR PAVIA UNIVERSITY.

Errora SCM NCM PCM GLNMF WNMF

Asphalt 0.0078 0.0178 0.0140 0.0494 0.0950

Meadows 0.0092 0.0572 N.A. 0.0219 0.0282

Trees 0.0142 0.0111 0.0336 0.0523 0.0754

Metal Sheets 0.1024 0.1069 0.0809 0.2274 0.4654

Bare Soil 0.0159 0.0555 0.0543 0.0345 0.0337

Bricks 0.0093 0.0647 0.1409 0.0857 0.1191

Shadows 0.0237 0.0486 0.0063 0.0020 0.0082

Average 0.0261 0.0517 0.0550 0.0676 0.1179

a the error was calculated according to Eq. (32) and the minimum

value for each row is boldfaced.

its RGB image and ground truth.

The parameters for SCM are β1 = 10, β2 = 50, ρ = 0.01. The abundance maps are shown

in Fig. 13. Due to the automatically trained large β2, the abundances of SCM show a sharp

transition from material to background, which is not usually seen in unmixing scenarios, but is

more akin to a segmentation. Note that the dataset has a high spatial resolution (1 meter/pixel) so

we could not expect many mixed pixels. Also, the ground truth features many pure pixels, which
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Fig. 11. Uncertainty ranges of endmembers estimated from SCM for Pavia University.

influences the parameters. Compared to the ground truth, SCM still matches it best, followed by

GLNMF. The latter also has a sparsity promoting term. The result here indicates that the widely

used L1/2 sparsity term may not work as well as our integrated smoothness and sparsity prior.

Fig. 14 shows the endmember comparison with quantitative errors in Table II. It can be seen

that SCM matches several materials best. The second best is GLNMF with a slightly larger

overall endmember error.

TABLE II

QUANTITATIVE COMPARISON OF ENDMEMBERS FOR GULFPORT.

Error SCM NCM PCM GLNMF WNMF

Dirt 0.0301 0.0174 0.0607 0.0065 0.1227

Asphalt 0.0057 0.0890 0.0420 0.0093 0.0213

Dead Grass 0.0107 0.0672 0.0226 0.0189 0.0305

Grass 0.0213 0.1372 0.0515 0.0468 0.0649

Shadow 0.0160 0.0057 0.0064 0.0074 0.0159

Tree 0.0029 0.1224 0.0034 0.0084 0.0281

Average 0.0145 0.0732 0.0311 0.0162 0.0472

The uncertainty ranges of endmembers are shown in Fig. 15. Since all the endmembers are

pretty close to the ground truth, all the uncertainties are also small. The only visible uncertainty
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Fig. 12. (a) RGB image and ground truth for the Mississippi Gulfport dataset. (b) Mean spectra of endmembers.

range that is not consistent with the endmember spectra is from dirt, which also features the

largest endmember error according to Table II. Note that though SCM also has a relatively

large endmember error for grass, the uncertainty is small. This could be due to the fact that the

uncertainty captures whether the pixels can be represented by the endmembers. It is possible

that the endmembers are far away from the ground truth, but still represent the pixels well (e.g.

see Fig. 6: at a small value of ρ, the endmembers are loosely expanded, thus away from the

ground truth, but since they still fit the pixels well, the uncertainty is small).

IV. DISCUSSION AND CONCLUSION

In this paper we have presented a spatial compositional model for linear unmixing of hy-

perspectral images. We use a smoothness and sparsity promoting prior on the abundances, and

assume the pixels are not independent to estimate not only the endmembers and abundances,
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Fig. 13. Abundance maps for the Gulfport dataset. The abundance errors for these 5 methods are 0.1003, 0.1991, 0.1564,

0.1252, 0.1533 respectively.

but also noise variances and endmember uncertainties. The results on synthetic and real datasets

show that the estimated endmembers are usually more accurate than the competing methods,

and the uncertainty may serve as an error prediction under certain conditions. Finally we discuss

some fundamental issues.

1. We model the noise as having different variances at different wavelengths and estimate the

noise simultaneously with the abundances and endmembers. However, there is a subtle difference

between our estimated noise and the noise estimated in [33], [34], [35]. Due to spectral variability,

the LMM in (2) may not hold for real datasets. To be specific, the endmembers that are used

to generate the pixels may vary per pixel. This is caused by many factors such as topography,

atmosphere, and multiple scattering in canopies (e.g. the painted metal sheets in the Pavia dataset

present different reflectances because of the varying angle of placement of these sheets) [19].

Our mathematical development shows that the noise becomes the residual error between the

reconstructed signal and the true signal. This is correct if the LMM holds. Since it may not
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Fig. 14. Qualitative comparison of endmembers for Gulfport.

hold in real scenarios, the noise estimated in this paper is actually not only the noise, but also

contains spectral variability.

2. This introduces an issue of system identification. Can we distinguish between endmember

variability and noise? If we only know the number of endmembers without other information,

the answer is no. Taking the SCM as an example, when the parameters β1 and β2 are tuned

differently, the solution obtained by minimizing the objective function will be different. Without

access to the ground truth, we don’t know which solution is better, because one solution may

interpret the image as having large endmember variability while another solution may interpret

the image as having small endmember variability. And we can not assume that the solution

with less endmember variability (i.e. lower estimated noise) is better. Hence, there is no general

way to determine these parameters in the absence of application backgrounds (though ρ may be

determined by the estimated uncertainty according to Fig. 6), and we recommend training them

based on some ground truth information.

3. The uncertainty encoded by the covariance matrix shows that its range can predict the

error when the estimated endmembers are inside the pixel cloud. This is determined by the pixel
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Fig. 15. Uncertainty ranges of endmembers estimated from SCM for Gulfport.

representational capability of the endmembers, i.e. how well do the pixels fit into the simplex

formed by the endmembers. Hence, it will fail to predict the error in some cases. One case

is when the endmembers are widely expanded such that the simplex is quite large (e.g. the

endmembers
{
m′′j
}

in Fig. 2 could have a small uncertainty but if {mj} is the ground truth, the

uncertainty does not reflect the error). Another case is if pure pixels do not exist, the uncertainty

could at best infer the smallest simplex that represents the pixels, instead of predicting the error

(e.g. Fig. 1(b) where the abundances do not span the full range).

In future work, we plan to revisit issues ranging from model selection to endmember variability

modeling.

APPENDIX A

RATIONALE FOR THE APPROXIMATION IN (22)

We show that the objective function (20) can be approximated by (22) for minimization with

respect to A, R in this Appendix, i.e. we show that

0 < zTQ−1z� ‖D−
1
2 (Y −AR)T ‖2F ,
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0 < log |Q| − log |[δijSj]| � ‖D−
1
2 (Y −AR)T ‖2F ,

assuming A, R, D are close to the ground truth. To be specific, both zTQ−1z and log |Q| −

log |[δijSj]| are O (MB) while ‖D− 1
2 (Y −AR)T ‖2F is O (NB).

We first show that zTQ−1z (positive because Q ∈ SPD (MB)) is negligible compared to

‖D− 1
2 (Y −AR)T ‖2F . Assume ATA is nonsingular (hence ATA⊗ IB ∈ SPD (MB)), from the

inequality in Lemma 1 (given at the end of this Appendix), we have

zTQ−1z = zT
(
[δijSj] + ATA⊗ IB

)−1
z

< zT
(
ATA⊗ IB

)−1
z

= zT
{
(VΛ⊗ IB)

(
ΛVT ⊗ IB

)}−1
z

= zT
(
(VΛ)−T ⊗ IB

) (
(VΛ)−1 ⊗ IB

)
z

= ‖
(
(VΛ)−1 ⊗ IB

)
z‖2

= ‖D−
1
2 (Y −AR)T A (VΛ)−T ‖2F

= ‖D−
1
2 (Y −AR)T U‖2F

where A = UΛVT , U ∈ RN×M , Λ ∈ RM×M , V ∈ RM×M is the compact singular value

decomposition (SVD) of A. Since UT is part of an orthogonal matrix, (Y −AR)T U can be

seen as rotating the columns of Y −AR and picking only M elements of the rotated vectors.

This is trivial compared to Y − AR which has N elements for each column (when A, R

are sufficiently accurate, Y −AR contains only the white noise sampled from an independent

Gaussian, which is uncorrelated with U).

Second, we can show that log |Q| − log |[δijSj]| > 0 and it is also negligible compared to

‖D− 1
2 (Y −AR)T ‖2F . The positivity arises from Weyl’s inequality (Theorem 4.3.1 in [36]) as

the eigenvalues of Q are greater than those of [δijSj]. Note that

log |Q| = log
∣∣∣[δijD 1

2 Σ−1j D
1
2

]
+ ATA⊗ IB

∣∣∣
= log

∣∣∣IM ⊗D
1
2

∣∣∣2 ∣∣[δijΣ−1j ]+ ATA⊗D−1
∣∣

= M log |D|+ log
∣∣[δijΣ−1j ]+ ATA⊗D−1

∣∣ ,
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and

log |[δijSj]| = log
∣∣∣[δijD 1

2 Σ−1j D
1
2

]∣∣∣
= log

∣∣∣(IM ⊗D
1
2

) ([
δijΣ

−1
j

]) (
IM ⊗D

1
2

)∣∣∣
= M log |D|+ log

∣∣[δijΣ−1j ]∣∣ .
Let σj1, ..., σjB be the the eigenvalues of Σ−1j in ascending order and λ1, ..., λM be the eigenvalues

of ATA in ascending order (which implies the eigenvalues of ATA ⊗ D−1 are λj/µ
2
k, j =

1, . . . ,M , k = 1, . . . , B). Let l = argmink µk. The sum of the above two expansions leads to

log |Q| − log |[δijSj]|

= log
∣∣[δijΣ−1j ]+ ATA⊗D−1

∣∣− log
∣∣[δijΣ−1j ]∣∣

≤ log
M∏
j=1

B∏
k=1

(
σjk + λM/µ

2
l

)
− log

M∏
j=1

B∏
k=1

σjk

=
M∑
j=1

B∑
k=1

log
(
1 + λM/

(
σjkµ

2
l

))
where Weyl’s inequality for eigenvalues is again used. Given that the reflectances of the end-

member signatures are bounded from above, the endmember covariance matrix should have σjk

bounded from below. Assuming that µl cannot be arbitrarily close to 0, we have λM/ (σjkµ2
l )

bounded from above. Although the interior of the logarithm could be pretty large, the logarithm

makes it small. Compared to ‖D− 1
2 (Y −AR)T ‖2F ≈ NB (by µ2

k ≈ 1
N

∑
i (Y −AR)2ik, when

A, R are sufficiently accurate),
∑

j,k log (1 + λM/ (σjkµ
2
l )) is negligible since M � N .

Lemma 1. Let A ∈ SPD (n), B ∈ SPD (n), then for any nonzero x ∈ Rn, xT (A + B)−1 x <

xTA−1x.

Proof: Let A = UΣUT , B = VΛVT be the eigendecompositions of A and B respectively.

Then

xTA−1x = xT
(
UΣUT

)−1
x = yTΣ−1y

where y := UTx, while

xT (A + B)−1 x = xT
(
U
(
Σ + QΛQT

)
UT
)−1

x

= yT
(
Σ + QΛQT

)−1
y
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where Q := UTV. By the Woodbury identity,(
Σ + QΛQT

)−1
= Σ−1 −Σ−1QCQTΣ−1

where C :=
(
Λ−1 + QTΣ−1Q

)−1
. We have

yT
(
Σ + QΛQT

)−1
y = yTΣ−1y − zTCz

where z := QTΣ−1y. Because C ∈ SPD (n) (since Λ−1 ∈ SPD (n) and QTΣ−1Q ∈ SPD (n))

and z is nonzero, zTCz > 0. Then we have xT (A + B)−1 x < xTA−1x.

APPENDIX B

CLOSED FORM SOLUTION FOR D IN (20)

We derive the closed form solution by taking the derivative of (20) with respect to D and

setting it to zero. As in Section II-D, Sj is treated as a separate variable. Also, we set ρ = 0 as

estimating the noise does not require the prior of endmembers. So we will only focus on

E ′1 = ‖D−
1
2 (Y −AR)T ‖2F − zTQ−1z +N log |D| .

To facilitate the process, we denote dk := µ−1k , d := [d1, . . . , dB]
T (hence D = diag (d ◦ d)−1)

and calculate the derivative with respect to d.

We start with the two simple terms. Since

E ′′1 = ‖D−
1
2 (Y −AR)T ‖2F +N log |D|

= Tr
{

D−1 (Y −AR)T (Y −AR)
}
+N log |D|

=
B∑
k=1

d2k

(∑
i

(Y −AR)2ik

)
− 2N

B∑
k=1

log dk,

the derivative with respect to dk can be obtained by

∂E ′′1
∂dk

= 2

(∑
i

(Y −AR)2ik

)
dk − 2Nd−1k ,

which can be organized as

∂E ′′1
∂d

= 2Ed− 2N
[
d−11 , . . . , d−1B

]T
, (33)

with E ∈ RB×B defined in (28).
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Then we move to the difficult part—calculating ∂zTQ−1z
∂d

by considering z defined in (18). Let

Q−1 =: [Cij] with Cij ∈ RB×B, (Y −AR)T A =: [x1, . . . ,xM ] with xj =: [xj1, . . . , xjB]
T . We

have D−
1
2 xj = [d1xj1, . . . , dBxjB]

T and

zTQ−1z = vec
([

D−
1
2 x1, . . . ,D

− 1
2 xM

])T
[Cij]

vec
([

D−
1
2 x1, . . . ,D

− 1
2 xM

])
=

M∑
i=1

M∑
j=1

(
D−

1
2 xi

)T
Cij

(
D−

1
2 xj

)

=
M∑
i=1

M∑
j=1

{
B∑
k=1

B∑
l=1

(Cij)kl dkxikdlxjl

}

=
M∑
i=1

M∑
j=1

dTdiag (xi)Cijdiag (xj)d.

Hence the derivative can be obtained as

∂zTQ−1z

∂d
=

M∑
i=1

M∑
j=1

{
diag (xi)Cijdiag (xj)d

+diag (xj)CT
ijdiag (xi)d

}
= FT [Cij]Fd + FT [Cij]

T Fd

= 2FTQ−1Fd, (34)

where F ∈ RMB×B is defined in (29), and we use the symmetry of Q−1.

Combining (33) and (34), we have the derivative

∂E ′1
∂d

= 2Ed− 2N
[
d−11 , . . . , d−1B

]T − 2FTQ−1Fd,

which leads to the solution in (27) by setting ∂E ′1
∂d

= 0.
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