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Abstract— Combining a hyperspectral (HS) image and a multi-
spectral (MS) image—an example of image fusion—can result
in a spatially and spectrally high-resolution image. Despite
the plethora of fusion algorithms in remote sensing, a nec-
essary prerequisite, namely registration, is mostly ignored.
This limits their application to well-registered images from
the same source. In this article, we propose and validate an
integrated registration and fusion approach (code available at
https://github.com/zhouyuanzxcv/Hyperspectral). The registra-
tion algorithm minimizes a least-squares (LSQ) objective function
with the point spread function (PSF) incorporated together with
a nonrigid freeform transformation applied to the HS image
and a rigid transformation applied to the MS image. It can
handle images with significant scale differences and spatial
distortion. The fusion algorithm takes the full high-resolution
HS image as an unknown in the objective function. Assuming
that the pixels lie on a low-dimensional manifold invariant to
local linear transformations from spectral degradation, the fusion
optimization problem leads to a closed-form solution. The method
was validated on the Pavia University, Salton Sea, and the
Mississippi Gulfport datasets. When the proposed registration
algorithm is compared to its rigid variant and two mutual
information-based methods, it has the best accuracy for both the
nonrigid simulated dataset and the real dataset, with an average
error less than 0.15 pixels for nonrigid distortion of maximum
1 HS pixel. When the fusion algorithm is compared with current
state-of-the-art algorithms, it has the best performance on images
with registration errors as well as on simulations that do not
consider registration effects.

Index Terms— Point spread function (PSF), hyperspectral (HS)
image analysis, image fusion, nonrigid registration.

I. INTRODUCTION

HYPERSPECTRAL (HS) images have important applica-
tions in agriculture, forestry, geoscience, and astronomy,

as the sensors can capture the reflectance at hundreds of
wavelengths ranging from visible to shortwave infrared, thus
leading to the analysis of the spectra of materials on the
surface. However, due to the limited amount of incident
energy, HS also suffers from a low spatial resolution such
that multiple objects are recorded within a single pixel. For
example, the Hyperion system onboard the Earth Observing 1
(EO-1) satellite launched in 2000 acquires data covering
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wavelengths of 0.4–2.5 μm with a 30-m spatial resolu-
tion [1], and the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor covers the same spectral range with an
18-m spatial resolution [2]. On the other hand, multispectral
(MS) (e.g., color) images are recorded with only a few
bands, but they can have a much better spatial resolution.
For example, the commercial satellite QuickBird launched
in 2001 can collect panchromatic imagery at 61-cm spatial
resolution and MS imagery at 2.5 m.

These two types of images can be combined—via image
fusion—to produce a spatially and spectrally high-resolution
image [3], [4]. Most research on this topic focuses only on
the fusion process, in which it is assumed that the images
are already registered. This limits their application to only
well-registered datasets that are collected at the same time
and from the same aircraft or satellite. In this article, we will
investigate registration and fusion together, without the strict
assumption about collection time and devices. Also, we are
especially interested in the case where the spatial resolution
difference is large and the registration accuracy requirement
is high.

Common fusion applications include land cover mapping,
mineral mapping, identifying plant species, and object detec-
tion. In our special case, we can also build ground-truth
abundance maps for unmixing HS images. A widely used
approach to obtain ground truth for material proportions is
to refer to the region of a high-resolution color image corre-
sponding to the HS counterpart, where the two images could
come from different sources. This approach has been used
by multiple endmember spectral mixture analysis (MESMA)
and the following work [5]–[7]. It is worth noting that this
type of registration relies on the coordinate information stored
in the image data, which may lead to shifts in the matched
regions due to the inaccuracy of pixel-level coordinates [8]. An
accurate registration can mitigate this effect and the combined
high-resolution pixels can be classified to obtain the ground
truth for material distribution. Another application is spatially
calibrating distorted airborne HS images resulting from the
instability of the collection process. In this case, a spatially
accurate high-resolution MS image can guide the calibration
of the HS image.

A. Related Work on Registration

Despite a plethora of work on fusion, there is little
mention of the registration process. Previous work focused
on registration is usually aimed at overcoming small-scale
differences as in [9] or lacks fine-scale accuracy [10]. For
example, Yokoya et al. [10] separated pixels with prominent
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features, e.g., lakes and rivers from those without. For the first
kind, control points with correspondence are found through
correlation. For the second kind, affine transformations are
used for interpolation. It can be difficult to achieve subpixel
accuracy in the case of large spatial scale differences when
using control points.

In the image registration community, there is little previous
work aimed at significant scale differences, despite the fact
that remote sensing is a major application area of image reg-
istration [11]. Registration methods can be mainly categorized
as intensity-based or feature-based. Intensity-based methods
calculate a metric based on the intensities of the images,
e.g., least squares [12] or mutual information (MI) [13], [14].
Sometimes the intensities are transformed to the frequency
domain, in which case a direct solution can be obtained
by phase correlation [15], [16], but this only applies to
simple transformations. Feature-based approaches are more
common in remote sensing as the images are usually very
large, and therefore, registering a number of feature points is
more efficient than comparing the intensities at all the pixels.
These methods usually select some control points through
low-level computer vision techniques, such as scale-invariant
Fourier transforms [17] or the Harris corner detector [18] and
approximate the nonrigid transformation through thin-plate
splines [19] or Gaussian radial basis functions [20]. For
example, in [21], a constraint from local linear embedding
on the feature points is used in the objective function for
registering various airborne images. Bentoutou et al. [22]
selected the control points in the reference image by edge
detection, found the corresponding points in the test image by
template matching, and used thin-plate splines to approximate
the warping for nonrigid registration of SPOT satellite images.
In [23], the Harris corner detector is used to select feature
points along with an MI objective for registering airborne
infrared images. In all these applications, the remote sensing
images are of similar spatial scale—a limitation that we seek
to overcome in this work.

B. Related Work on Fusion

Assuming that the images are already registered, vari-
ous techniques, including component substitution, Bayesian
methods, and matrix factorization, are proposed for image
fusion [3], [4]. Component substitution transforms the spa-
tially upsampled spectral data into components in another
space, substitutes a related component with the high-resolution
image, and transforms them back to the original spectral
space. One example is the guided filter principal component
analysis (PCA) (GFPCA) algorithm, which used a guided
filter [24] in the PCA domain and won the 2014 IEEE Data
Fusion Contest [25]. It upsamples the HS image using cubic
interpolation and projects the data to a few principal compo-
nents using PCA. Then, in local windows, these components
are substituted by linear combinations of the bands of the
high-resolution image.

Previous work tends to assume that the high-resolution HS
image follows the linear mixing model (LMM), which means
that the spectrum of each pixel is a linear combination of some
material spectra (endmembers) with their subpixel fractions

as coefficients (abundances) [26]. Hence, they are interested
in estimating the endmembers and abundances, which can be
used to reconstruct the full resolution image [27], [28]. For
example, coupled nonnegative matrix factorization (CNMF)
alternately updates the endmembers and abundances using
the multiplicative update rules [28]. Bayesian methods give
a least-squares objective function with fitting errors weighted
by noise covariance matrices [29]–[32]. Several priors are
added into this formulation for regularization. For example,
a Gaussian prior is used in [31] where the abundances are
assumed to follow a Gaussian distribution whose mean is the
upsampled HS image. In [32], the prior forces the abundances
to be a sparse linear combination of elements of an over-
complete dictionary. Since the Bayesian formulation is only
useful insofar as it introduces a noise covariance matrix into
the least-squares term, we can directly use this term with
some constraints. For example, HySure minimizes a similar
data fidelity term under a spatial smoothness constraint on the
abundances [33].

Despite the popularity of the LMM in fusion, nonlinearity
and endmember variability have been well studied to bet-
ter represent the real data in unmixing research [34], [35].
When endmember variability is considered, each pixel may
be formed by a different endmember set, which breaks the
low-rank assumption of the LMM. To solve this issue, there
is research that uses the LMM in a local manner. Vegan-
zones et al. [36] partitioned the image into overlapping local
regions with the LMM used only locally. The final result is
obtained by combining locally reconstructed images. Recently,
there is an emerging interest in directly reconstructing the
high-resolution HS image without the LMM assumption. Espe-
cially, the pixels are treated as lying on a low-dimensional
manifold with regularization constraints derived from the MS
image [37], [38].

C. Our Contribution

Registration and fusion of HS and MS images are usually
studied separately, i.e., the validation of fusion is achieved
without regard to registration effects, while the varying regis-
tration error is not viewed in regard to fusion error. A common
way of generating a dataset for evaluation is through spatial
and spectral degradation of an existing HS dataset. This
facilitates evaluation of the fusion process. However, it iso-
lates the evaluation to this ideal situation, while in practice,
the performance of fusion depends largely on registration.
Furthermore, if we view these two topics separately, they have
their own characteristics. For fusion, the widely used LMM
assumption may not be sufficient to accurately represent the
image as the presence of endmember variability attests. For
registration, significant scale difference is seldom studied and
spatial distortion exists in airborne HS images. Fig. 1 uses an
example to show the challenges for registration, where the HS
image is obtained from the AVIRIS portal and the MS (color)
image is obtained from Google Earth. Fig. 1(a) shows the huge
scale difference such that a point spread function (PSF) may
be needed in the registration. Fig. 1(b) shows the neighboring
pixels having similar spectra, which is probably caused by
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Fig. 1. Challenges faced in registering an HS image and an MS image.
(a) Region of interest (ROI) of the Salton Sea dataset has 56 × 51 pixels with
224 bands (shown as a color image by extracting the bands close to 650, 540,
and 470 nm), while the MS image has 738 × 674 pixels with 3 bands. The
scale difference is about 10. (b) Manually picked pixels P1 and P2 (P3 and
P4) have the same spectra. To register the MS image to the HS image, one
way is that the road should lie exactly between P1 and P2 and between P3 and
P4. However, considering the environment pixels, a more proper explanation
is that P1 and P2 (P3 and P4) are spectra corresponding to the same location.

spatial calibration error, and hence, the nonrigid transformation
may be needed for the HS image.

Considering these problems, the contributions of this work
are threefold. First, we propose a least-squares (LSQ) objective
function, including the PSF for registration. We apply a rigid
transformation to the MS image and a nonrigid transformation
to the HS image and estimate them simultaneously. The
model can handle significant scale difference and spatial
distortion with high accuracy. Second, we propose a fusion
objective function directly involving the high-resolution HS
image. It assumes that the reconstructed pixels lie on a low-
dimensional manifold where every point can be reconstructed

by its neighbors in the same way as the pixels from the
MS image. The resulting algorithm turns out to be easy
to implement, fast to execute, and also capable of keeping
spectral details. Third, by comparing several registration and
fusion algorithms, we validate them in both the previous
way (evaluate registration and fusion performance separately)
and our integrated way (evaluate fusion performance in the
presence of registration error). A prior work focusing on
registration was published in [39].

II. PROBLEM FORMULATION

We will first make the following physical assumptions. Let
D ⊂ R

2 be the image domain, x = [x, y]T ∈ D, I : D →
R

B+ : I (x) = [I1(x), I2(x), . . . , IB(x)]T be the HS image with
B bands, and Ik : D→ R+ be the image at the kth band such
that

Ik(x)=
∫

R2
g(y−Sx)rk(y)dy+nk(x), k = 1, . . . , B (1)

where S = diag(s1, s2) ∈ R
2×2+ is the scaling matrix, g :

R
2 → R is the PSF that is assumed to be positive and

normalized, that is

g(x) ≥ 0 ∀x,

∫
R2

g(x)dx = 1. (2)

The PSF usually takes the form of a Gaussian function or a
constant function over a circular region around the origin [40].
rk : R

2 → R+ denotes the fine-scale reflectance at the kth
wavelength. nk(x) is the noise.

Suppose that the MS image has b bands and is denoted by
I ′ : D′ → R

b+ : I ′(x) = [I ′1(x), . . . , I ′b(x)]T . Considering that
the HS image has a spectral resolution with much narrower
bands than the MS image (e.g., 10 nm for AVIRIS and 5 nm
for AVIRIS-NG compared to 60–270 nm from IKONOS [41]
and Landsat Thematic Mapper [30]) and an MS band covered
spectral range can also be covered by multiple HS bands,
an MS band can be assumed to be a linear combination of
some selected HS bands

I ′l (x) = h0l +
d∑

i=1

hilrki (x)+ n′l(x), l = 1, . . . , b (3)

where k1, k2, . . . , kd are the selected indices of the B wave-
lengths, h0l , h1l , . . . , hdl are the coefficients of the spectral
response function (SRF), and n′l (x) is again the noise function.
A constant shift h0l is added because we also consider
modeling images from different sources. An example shape
of the SRF for the IKONOS satellite sensor can be seen in
[41, Fig. 1], where each MS band covers 100 nm and the
panchromatic band covers 600 nm.

Assuming that the images are perfectly registered, combin-
ing (1) and (3) while ignoring the two noise functions gives

h0l +
d∑

i=1

hil Iki (x) = h0l +
d∑

i=1

hil

∫
R2

g(y− Sx)rki (y)dy

=
∫

R2
g(y− Sx)I ′l (y)dy (4)

where the change of summation and integration uses the
property in (2). In the context of image registration, we usually
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Fig. 2. Overview of the proposed integrated approach for registration and fusion.

have a reference (fixed) image and a test (moving) image
whose coordinates are transformed. In our case, first note that
to introduce the PSF, at least translation should be to added to
the coordinates of the MS image, since we want to combine
a correct set of high-resolution pixels to a low-resolution
pixel. Therefore, we introduce a rigid transformation to the
MS image. For the nonrigid transformation, however, we can
not add it to the rigid transformation. This is because the
high-resolution image has better spatial accuracy, while a
nonrigid transformation will distort it. Hence, we separate
the transformation into two parts and apply the nonrigid
transformation to the HS image. Let T : R

2 → R
2 be

the transformation on the HS image, T ′ : R
2 → R

2 be
the transformation on the MS image, and

T (x) = x + v(x), T ′(x) = Ax + t (5)

where v(x) = [u(x), v(x)]T is a nonrigid translation field on
the coordinates, A contains only rotation since scaling is incor-
porated in S (we ignore shearing here), and t = [t1, t2]T ∈ R

2

is the translation vector. Then, given unregistered I and I ′,
the relation (4) becomes

h0l +
d∑

i=1

hil Iki (T (x)) =
∫

R2
g(y− Sx)I ′l (T ′(y))dy (6)

for l = 1, . . . , b and our problem is to find T and T ′.
The major difference of this formulation from traditional

registration is the separation of transformations to the two
images. Another difference is the introduction of the SRF and
the PSF. For the rigid transformation, the scaling is separated
from the rotation/translation in order to introduce the PSF.
If we ignore the scale S, the right-hand side is actually
convolution. Hence, it actually moves the MS image and then
performs low-pass filtering and downsampling.

Once we have the two images registered, we can retrieve
the original reflectance rk from (1) and (3), which is the
fusion process. This can be achieved by solving the following
functional:

E({rk})=
B∑

k=1

∫
(Ik(T (x))−

∫
R2

g(y − Sx)rk(y)dy)2dx

+
b∑

l=1

∫ (
h0l+

d∑
i=1

hil rki (x)− I ′l (T ′(x))

)2

dx. (7)

Note that even if the PSF and the SRF are given, this is
still an underdetermined problem. Hence, we will use some
regularization to estimate the high resolution rk . An overview
of the proposed integrated approach is shown in Fig. 2, with
details given in Sections III and IV.

III. REGISTRATION

A. Rigid Registration in Fine Scale

We will first consider rigid registration in fine scale and
then extend it to the nonrigid case. Let I ′′ : D → R

b :
I ′′(x) = [I ′′1 (x), . . . , I ′′b (x)]T be the transformed, downgraded
MS image, that is

I ′′l (x) =
∫

R2
g(y− Sx)I ′l (T ′(y))dy, l = 1, . . . , b (8)

where T ′ is defined in (5). Assume that the PSF has the form
of a Gaussian

g(x, y) ∝ H (ρ −
√

x2 + y2)e−
x2+y2

2σ2

where σ determines the shape and ρ is the radius controlling
the range of influence with the Heaviside function H (ρ can
be obtained from the instantaneous field of view (IFOV) and
the flight height). We can minimize the squared L2 norm of
the difference function

E(S, A, t, σ )=
∫
D

∑
l

∣∣∣∣∣h0l+
d∑

i=1

hil Iki (x)− I ′′l (x)

∣∣∣∣∣
2

dx (9)

with respect to S, A, t, and σ . We can rewrite the continuous
objective function in a discrete form. Let Y ∈ R

N×B be the
discretized version of I and X′ ∈ R

N×b be the discretized
version of I ′′. The selection of d bands based on the indices
{ki , i = 1, . . . , d} can be encoded in a matrix E ∈ R

B×d ,
where for the i th column, only the ki th row is one, while the
others are zero. If H := [hil ] ∈ R

d×b, h0 := [h01, . . . , h0b]T ∈
R

b, H̃ := [h0, HT ]T ∈ R
(d+1)×b, and Ỹ := [1N , YE] ∈

R
N×(d+1), we can rewrite (9) in the following discrete form:

E(S, A, t, σ ) = ‖X′ − ỸH̃‖2F . (10)

Equation (10) not only has the registration parameters as
unknown but also the SRF H̃. We can remove this dependence
by solving for it. It is an overdetermined problem to get H̃
from (10). A direct solution will introduce nonsmooth SRFs.
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Therefore, we add a regularization term to enforce neighboring
values to be similar, that is

E(H̃) = ‖X′ − ỸH̃‖2F +
λ

2

d∑
i=1

d∑
j=1

wi j ‖hi − h j‖2

= ‖X′ − ỸH̃‖2F + λTr(HT LH) (11)

where hi := [hi1, . . . , hib]T ∈ R
b (hence, H̃ =

[h0, h1, . . . , hd ]T ). wi j = 1 when |i− j | = 1 and wi j = 0 oth-
erwise. L ∈ R

d×d is the Graph Laplacian matrix constructed
from {wi j } [42]. λ is a parameter. Taking the derivative of (11)
with respect to H̃ and setting it to zero, we have

H̃ = (ỸT Ỹ+ λL′)−1ỸT X′ (12)

where L′ := diag(0, L) ∈ R
(d+1)×(d+1). Plugging H̃ in (12)

back into (10), the objective function becomes

E(S, A, t, σ ) = ‖X′ − Ỹ(ỸT Ỹ+ λL′)−1ỸT X′‖2F .

This is the final objective function used in the optimization.
The optimization involves the parameters for the transfor-

mation and for the PSF. We can split them into two sets and use
block coordinate descent, i.e., at each iteration, we alternately
set

S, A, t← arg min
S,A,t

E (S, A, t, σ ) , σ ← arg min
σ

E(S, A, t, σ ).

For the minimization problem with respect to S, A, and t, we
can also use block coordinate descent, where each individual
minimization is achieved by the brutal-force search. Given an
initial registration (e.g., phase correlation or multiscale MI on
the coarse-scale images), the search is restricted to a small
neighborhood and we use five levels of brutal-force search
with step sizes reduced by half at each level to achieve a
finer grid. It has been shown that block coordinate descent
can find the global optimum if the objective function is convex
[43]. Since our objective function features a least-squares term,
the capture range of convexity could be large enough for a
decent initialization. Also, since the search is restricted to a
discrete grid, it will quickly converge to a local minimum on
this grid.

B. Nonrigid Registration Using Calculus of Variations

We can extend the rigid registration in Section III-A to
the nonrigid case by adding the optimization with respect
to v(x). Let I ′′l (x) be as defined in (8). With the nonrigid
transformation, (9) is written as

E(S, A, t, v, σ )=
∫
D

∑
l

∣∣∣∣∣h0l+
d∑

i=1

hil Iki (T (x))− I ′′l (x)

∣∣∣∣∣
2

dx

(13)

where T (x) = x + v(x). Suppose that H̃ is given in (12),
equation (13) is a functional with respect to the translation field
v(x) = [u(x), v(x)]T . For optimization with respect to v(x),
we also want the nonrigid transformation to be a smooth func-
tion, so an additional constraint α

∫ ‖∇u(x)‖2 + ‖∇v(x)‖2dx
is added to (13). Using calculus of variations, we can obtain

the necessary condition for its minimization, i.e., setting the
following Euler–Lagrange equation to zero

δE
δv
= 2

∑
l

{(
h0l +

d∑
i=1

hil Iki (T (x))− I ′′l (x)

)

×
(

d∑
i=1

hil∇ Iki (T (x))

)}
− 2α∇2v(x)

where ∇ is the gradient operator and ∇2 is the Laplacian
operator. Directly solving δE/δv = 0 for v(x) is a difficult
problem. An easy way is to introduce another time variable
to v(x), say v(x, t), such that we have a partial differential
equation (PDE) ∂v/∂ t = −δE/δv to solve. Using the forward
difference on ∂v/∂ t , we have an update rule

v(x)← v(x)−�t
δE
δv

(14)

where �t should be small enough to ensure a stable solution.
Given an initial condition (e.g., v(x) = 0), we can update
v(x) according to (14). Once it converges (e.g., maxx |u(x)−
uold(x)| < 10−4 and maxx |v(x) − vold(x)| < 10−4 where
the thresholds have been specified), we have a solution to
δE/δv = 0.

The implementation involves the discretization of the gradi-
ent and the Laplacian operator. We use centered difference for
the first-order derivative and second centered difference for
the Laplacian operator. Considering that the diffusion term
∇2v(x) originates from the heat equation and we want the
smoothing to be isolated in the domain, the homogeneous
Neumann boundary condition is adopted for v(x).

Combining this optimization with the rigid version, we have
our final update rules for the least-squares problem (13)

S, A, t ← arg min
S,A,t

E(S, A, t, v, σ )

v(x) ← arg min
v(x)

E(S, A, t, v, σ )

σ ← arg min
σ

E(S, A, t, v, σ )

where the second minimization problem is solved by the
update rule (14), while the remaining two follow Section III-
A. In practice, the update of S, A, and t can be stopped after
a short period to accelerate convergence.

IV. FUSION

A. Underdetermined Problem

We will discretize (7) to obtain the actual fusion problem.
Let X ∈ R

N ′×b be the discretized version of I ′ ◦T ′ following
Section III and R ∈ R

N ′×B be the discretized version of
{rk : k = 1, . . . , B} (i.e., the high-resolution reflectance to
be estimated). Using E, H, and h0 defined in Section III-A,
equation (3) can be discretized as X ≈ 1N ′hT

0 +REH, where
the noise term is ignored. Let X̃ := X− 1N ′hT

0 ∈ R
N ′×b and

F := EH ∈ R
B×b, the relation can be written as X̃ ≈ RF,

where X̃ is an adjusted MS image and F corresponds to the
SRF matrix in other works.

As for the formation of HS images (1), we can also write it
in a discretized form. Say R MS pixels correspond to an HS
pixel and g can be discretized as g := [g1, . . . , gR]T ∈ R

R .
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Note that (N ′/N) = R may not be true as the PSF covered
regions may have overlap. Let cn : {1, . . . , R} → {1, . . . , N ′}
map the MS pixel index with respect to the local window to
the global index for the nth HS pixel. Once the two images are
registered, cn is unique for each HS pixel and represents the
correspondence. We can encode cn as a correspondence matrix
Cn ∈ R

R×N ′ such that only the element at the lth row, cn(l)th
column is 1, while the other elements are 0. Then, (1) can be
discretized as yn ≈ (CnR)T g, where Y := [y1, . . . , yN ]T ∈
R

N×B denotes the discretized HS image I ◦T and the noise is
ignored. Combining all the pixels, we have Y ≈ GR, where
G := [CT

1 g, . . . , CT
N g]T ∈ R

N×N ′ is the PSF matrix in other
works.

Given the registration result, we know F and G and X̃ and
Y. The objective of fusion is to retrieve R, which can be
written in the following optimization problem:

E(R) = γ ‖GR − Y‖2F + (1− γ )‖RF− X̃‖2F (15)

where γ ∈ (0, 1) is a balancing parameter. This problem is
underdetermined, considering the matrix dimensions. Instead
of assuming R to be decomposed into a product of two
matrices, we use some constraints for regularization.

B. Regularization Term

The regularization term comes from the manifold assump-
tion. Assuming that the original high-resolution HS pixels lie
on a smooth low-dimensional manifold and every local patch
on the manifold has the same geometric properties as the
manifold of the MS pixels, we can enforce a constraint that
preserves these properties in the reconstruction. Specifically,
for the i th pixel in the adjusted MS image X̃, say xi , we find
its closest K neighbors in the b-dimensional spectral space
and assume that this pixel is a linear combination of its
neighbors. Another way to interpret it is that the neighbors
are endmembers and the linear coefficients are abundances,
which can be seen as a kind of local LMM. To reduce com-
putational complexity, the spatial locations of these neighbors
are restricted to a local circular region Bi (ρ) centered at
the pixel with radius ρ (pixel) (we reuse the notation ρ in
Section III). Hence, it is similar to local linear embedding [44],
except that the graph is constructed with a spatial location
constraint.

Suppose that the K closest neighbors (in spectrum) in
Bi (ρ) have indices given by Mi : {1, . . . , K } → {1, . . . , N ′}
which maps its j th neighbor to the index in the whole
image, the coefficients αi = [αi1, . . . , αi K ]T can be solved
by minimizing

E(αi )=
∥∥∥∥∥∥

K∑

j=1

xMi ( j )αi j − xi

∥∥∥∥∥∥

2

, s.t. αi j ≥0,
∑

j

αi j = 1.

(16)

Solving this traditional unmixing problem for every MS
pixel is expensive [45]. Also, considering that {xMi ( j )} are
similar to xi , this problem may have an identifiability issue.
Hence, we introduce a regularization term 
‖αi‖2 and remove

the positivity constraint. Using Lagrange multipliers, an ana-
lytic solution is available to E(αi )

αi = (Si + 
I)−11K

1T
K (Si + 
I)−11K

where Si ∈ R
K×K is a matrix whose j th row, kth column

element is (xMi ( j ) − xi )
T (xMi (k) − xi ).

Once we have the neighbor indices and coefficients, we can
assume that the same graph exists for R = [r1, . . . , rN ′ ]T and
the reverse of the following derivation holds:
ri≈

∑
j

rMi ( j )αi j �⇒ xi≈
∑

j

xMi ( j )αi j (FT ri ≈xi). (17)

Hence, we obtain linear relations among {ri }. To enforce the
relations, the key is to construct a sparse matrix D ∈ R

N ′×N ′ to
calculate ‖∑ j rMi ( j )αi j − ri‖2. For the i th row of D, we set
the Mi ( j)th column to be αi j for j = 1, . . . , K and the
i th column to be −1. Then, the constraint can be written as
‖DR‖2F = Tr{RT (DT D)R}. Note that D depends on ρ. Thus,
we add the subscript and use Dρ henceforth. When ρ = 1,
the region Bi (ρ) shrinks to the first-order neighborhood of the
pixel (adjacent 4 pixels on the image lattice), which spatially
regulates the current pixel spectrum such as a smoothness
constraint. Combining it with the spectral constraint with large
ρ, the regularization term becomes

E(R) = ‖Dρ1 R‖2F + ‖Dρ2 R‖2F = Tr(RT LR) (18)

where L =∑ρ∈{ρ1,ρ2}D
T
ρ Dρ , ρ1 = 1, and ρ2 is a parameter.

C. Algorithm

Consider the problem (15) with regularization (18). We have
an optimization problem where we minimize

E(R) = γ ‖GR−Y‖2F+(1−γ )‖RF− X̃‖2F + βTr{RT LR}
(19)

where β is a parameter. We ignore the positivity constraint on
R because, in practice, the regularization term along with the
data fidelity term makes the solution seldom negative (we will
show the sufficiency of our formulation in the experiments).

It can be verified that minimizing (19) is a convex problem.
Hence, any local minimum will be its global minimum, and we
can take the derivative with respect to R and set it to zero to
find the solution, which turns out to be the Sylvester equation

BR + R(1− γ )FFT = Z (20)

where B ∈ R
N ′×N ′ and Z ∈ R

N ′×B denote

B := (γ GT G+ βL), Z := γ GT Y+ (1− γ )X̃FT .

Note that B is a sparse banded positive-definite matrix
whose bandwidth is determined by ρ2, and FFT ∈ R

B×B is
a symmetric matrix with only b (number of bands for the
MS image) nonzero eigenvalues. We can use the classical
Krylov subspace method to solve (20) more efficiently [46].
Namely, we decompose (1 − γ )FFT by eigendecomposition,
say (1− γ )FFT = U�UT (� = diag(λ1, . . . , λB) consists of
eigenvalues), which turns (20) into BR′ + R′� = Z′, where

Authorized licensed use limited to: Yale University. Downloaded on April 01,2021 at 22:05:27 UTC from IEEE Xplore.  Restrictions apply. 



3026 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 5, MAY 2020

Algorithm 1 Proposed Fusion Algorithm

Input: X, Y, E, H̃, G, γ , β, ρ2, K

1) γ ← (
N B (1− γ ) /N ′bγ + 1

)−1
, β ← (b/B) β.

2) F← EH, X̃← X− 1N ′hT
0 .

3) Following Section IV-B, construct L from X̃.
4) Z← γ GT Y+ (1− γ ) X̃FT , B← (

γ GT G+ βL
)
.

5) Let U consist of the eigenvectors of (1− γ ) FFT and
{λi } be the eigenvalues, solve (B+ λi I) r′i = z′i for r′i ,
i = 1, . . . , B , where z′i is the i th column of ZU.

6) R← [
r′1, . . . , r′B

]
UT .

Output: R

R′ = RU and Z′ = ZU. Then, R′ = [r′1, . . . , r′B] can be
obtained by solving linear system of equations (B+ λi I)r′i =
z′i , where z′i is the i th column of Z′. Finally R is retrieved by
R′UT .

The algorithm is described in Algorithm 1. For the input
parameters, E, H̃, and G are obtained from registration. If the
PSF and the SRF are not available while the images are
registered (pixel correspondence is known), we can resort to
‖GX − ỸH̃‖2F in (10) to estimate g and H̃, where g can be
updated by projected gradient descent and H̃ can be updated
by (12). The first step in the algorithm is trying to adjust the
parameters based on the number of elements in different terms,
e.g., suppose that γ N B/(1 − γ )N ′b = γ ′/(1 − γ ′), we have
γ = (N B(1 − γ ′)/N ′bγ ′ + 1)−1. Step 2 calculates the SRF
and the adjusted MS image, where h0 is the transposed vector
of the first row of H̃ and H comes from the remaining rows.
In step 3, we construct L based on the adjusted MS image.
We use 
 = 10−4 in calculating αi . Step 4 calculates the
matrices in the Sylvester equation (20) and the last two steps
solve the equation. Since there are only b nonzero eigenvalues,
for zero eigenvalues, we can use Cholesky decomposition to
process all the linear equations at one time.

V. RESULTS

We compared four registration algorithms in the experi-
ments. Other than the proposed LSQ rigid registration (referred
to as LSQ) in Section III-A and LSQ nonrigid registration
with freeform deformation (referred to as LSQ freeform) in
Section III-B, we also tried MI as a metric in our registration
framework and compared against both rigid and nonrigid
versions. The parameters α, λ, and �t in our algorithms are
fixed as α = 0.05, λ = 10−3 N , and �t = 1. The two
MI-based algorithms are embedded and implemented in our
own framework to handle the significant scale difference. The
rigid MI algorithm (referred to as MI) calculates the metric
based on the red band of the MS image and the closest band
to 650 nm of the HS image. The entropy was calculated by
histogramming with 64 bins for the marginal distribution. The
nonrigid version (referred to as MI B-spline) uses B-splines to
model the deformation, with control points spaced at 8 pixels,
then refined to 4 pixels, and finally 2 pixels for the first
iteration. The remaining iterations use 2-pixel spaced control
points from the previous iteration to further fine-tune the
parameters.

The registration error can be calculated for the simulated
dataset, where the rigid and nonrigid transformations are
known. Though various parameters are known, we are espe-
cially interested in the pixel match error in the HS domain
since they affect the subsequent application. According to [27],
the pixel match error should be less than 0.2 pixels in the
HS domain for meaningful spectral unmixing and fusion.
To calculate this error, we transform the HS pixel coordinates
into the corresponding points in the high-resolution image
domain according to the ground-truth rigid and nonrigid trans-
formations in (6) and then apply the estimated transformations
to transform them back to the HS domain. These transformed
coordinates are compared with the expected coordinates, and
Euclidean distances are calculated to represent this error.

For fusion of HS and MS images, we compared the pro-
posed algorithm with GFPCA [25], CNMF [28], Bayesian
Naive [31], Bayesian Sparse [32], and HySure [33]. We use
color images as MS images in the experiments since they
are most easily available in practice. The parameters of our
algorithm are γ = 0.5, β = 1, K = 3, and ρ2 = 15. For
the competing methods, their code was obtained from the
pansharpening toolbox [3]. The parameters of GFPCA were
tuned to perform best on the first dataset using the proposed
registration. For all algorithms, the PSF, SRF, and the starting
downsampling position were input if acceptable. We used the
same four quality measures in [3], i.e., correlation coefficient
(CC), spectral angle mapper (SAM), root-mean-squared error
(RMSE), and erreur relative globale adimensionnelle de syn-
these (ERGAS). Given the ground-truth high-resolution HS
image and the estimated one, CC calculates the correlation
coefficient of each band and averages them (best value is 1).
SAM calculates the angle between the spectra of these two
images, while RMSE calculates the size weighted L2 norm.
The calculation of ERGAS involves the scale difference and
RMSE weighted by average values of each band. Except CC,
the lower the value, the better the result.

A. Registration and Fusion on Pavia University

The Pavia University dataset was recorded by the Reflective
Optics System Imaging Spectrometer (ROSIS) during a flight
over Pavia, Italy, in July 2002. The scene is around the
Engineering School at the University of Pavia. The image
features a spatial size of 340 × 610 pixels with a resolution
of 1.3 m/pixel. In the spectral domain, it covers the wave-
lengths from 430 to 860 nm by 103 bands. We used it to
generate a color image and a low-resolution HS image.

The color image took the visible bands and used a
Gaussian-like SRF covering 120 nm for each band, centered
at 650, 540, and 470 nm (we set h0 = 0 to conform with
the assumption of the competing methods). We used the top
part of the image with the pixel size of 340 × 500 for the
color image, as shown in Fig. 3. Note that the original HS
image is already distorted by observing that the middle blue
roof is not straight. The HS image was generated by rotating
the original image by 0◦–10◦ and scaling it by s = (4.4, 4.5)
with a PSF σ = 10 and ρ = 3. The generated HS image
has a size of 50 × 80 pixels with 103 bands. We considered
two cases. For the rigid case, only rotation and scaling were
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Fig. 3. Simulated Pavia University dataset with the color image and HS
images (rotated by 5◦). (Top-right corner) Translation field that was applied
to the nonrigidly distorted version. The translation field moves four parts of
the image by opposite directions, with a maximal magnitude of 1 pixel.

applied to generate the HS image. For the nonrigid case,
a further nonrigid transformation with T (x) = x + v(x),
where v(x) =∑

k ckN (x|μk, σ
2I2), was applied to the image

from the rigid case. We used eight Gaussian components to
simulate the aircraft instability. The translation field v(x) and
the nonrigidly distorted HS image are shown in Fig. 3. Both
the two images were further contaminated by a zero-mean
additive Gaussian noise with standard deviation σn on all the
bands.

For registration, a comprehensive quantitative comparison
for all the images and noise levels is shown in Fig. 4. Among
the 11 results for each noise level, we found a few large
registration errors that dominated the y-axis in the box plots.
To better visualize the successful cases, we removed the largest
four errors for each method. The distribution shows that for
the rigid dataset, LSQ gives the least error, while all except
MI B-spline have errors below 0.1. For the nonrigid dataset,
LSQ freeform performs best with errors below 0.15, followed
by errors around 0.2 from MI B-spline.

For fusion, we picked the first dataset in the nonrigid reg-
istration case (σn = 0.0001 in the second row of Fig. 4) such
that the random noise does not interfere with our fusion quality
measures. We ran fusion algorithms in two cases, with ground-
truth registration parameters and with estimated registration
parameters (from LSQ freeform). The fusion results are shown
in Table I, where the mean of multiple images is calculated.
Comparing the two main categories, the difference is notice-
able even if the registration error is as small as 0.1 pixels. For
both registrations, the proposed fusion algorithm has the best
result with respect to all the measures.

To test the fusion performance with respect to different
registration errors, we generated images with increasing dis-
tortion magnitudes (following the same pattern in Fig. 3).
LSQ freeform was applied to obtain increasing registration
errors, and fusion algorithms were run on the registration
results. Fig. 5 shows the trend with respect to the four quality
measures, where we also ran the proposed algorithm with a
different value of β. We can see that the proposed, CNMF, and

TABLE I

FUSION RESULTS ON THE PAVIA REGISTRATION DATASET

HySure performed better than the others, which is consistent
with the previous comparison [4]. In most cases, the proposed
is noticeably better except when the registration error is
large enough approaching 0.5 pixels. Note that 0.5 pixels
registration error is already unrealistically large since it means
that in average half of the HS pixel covered area is shifted.
In practice, such an ill-calibrated HS image rarely exists given
the subpixel accuracy of spatial calibration [47].

Comparing the proposed algorithm with different regular-
ization strength, we see that it is quite stable with a changing
β value when there is no registration error. Comparing the
slopes, our algorithm maintains the fusion quality similar to
most of the methods when β = 1. An exception is CNMF that
almost does not deteriorate with increasing registration errors.
Note that the result of CNMF is not deterministic, which may
account for the occasional poor performance. Also, because
the image is small, the LMM assumption is somewhat valid
for a small region and this assumption makes CNMF more
stable to increasing registration errors. When β is small (0.1 or
0.01), the proposed fusion algorithm deteriorates faster. This
implies that the manifold-based regularization term makes the
algorithm more robust to large registration errors, showing an
effect similar to the LMM assumption.

B. Registration on Salton Sea

The Salton Sea dataset was collected by the AVIRIS
onboard the ER-2 aircraft (20 km above the ground) on
March 31, 2014. The IFOV for one sample is about 1 mrad
(a pixel covers a 20-m-diameter region). Given its 16.9-m
spatial resolution, there is some overlap between the signals of
neighboring pixels. We selected a small ROI (56 × 51 pixels
with 224 bands) containing vegetation, a river, rooftops, and
a small part of a hill. The color image (738 × 674 pixels
with three bands) was obtained from Google Earth, with the
original image collected in March 2015. There is a one-year
interval between the two images, which may not guarantee
exact correspondence for each pixel. We use it to validate
the registration algorithms. An initial scale s = 10.4 was
estimated between the two images, which means that the PSF
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Fig. 4. Quantitative comparison of the simulated Pavia dataset. The first (second) row shows the error distribution for the rigid (nonrigid) dataset.

Fig. 5. Fusion results on the Pavia dataset with increasing registration errors.
To achieve various registration errors, the magnitude of the translation field
in Fig. 3 varied from 0 to 4 pixels with an interval of 0.4 pixels. The proposed
algorithm was also run with β = 0.1 and β = 0.01. The accuracy is slightly
higher than the results in Table I because only nonrigid transformation on the
HS image is to be estimated by registration.

has ρ = �(20/16.9) × 10.4/2� = 7. The dataset is shown
in Fig. 1.

Fig. 6 shows the registered HS and color images. We com-
pared the original HS image and the transformed one visually
and marked three differences in red circles. For the top circle,
the original one has a thick road segment, while the trans-
formed one has a thinner road. Considering the narrowness
of the road in the registered color image, the transformed one
gives a better spectra distribution. For the other two circles,
the boundary between the vegetation and the road is not
smooth compared with the boundary in the high-resolution

Fig. 6. Qualitative results for the Salton Sea dataset. The three-circle marked
areas in the original HS image are improved in the transformed image from
LSQ freeform. A detailed region-spectra correspondence for the four locations
specified in the color image is shown in Fig. 7.

color image. In the transformed image, they are more smooth
and better correspond to the scene. In comparison, the trans-
formed image from MI B-spline appears to be fuzzier.

Fig. 7 shows the region-spectra correspondence from LSQ
freeform, LSQ, and MI B-spline (MI not shown due to its
similarity to LSQ) for the arrow marked locations in Fig. 6.
For the first column, LSQ (MI) has the green region consisting
of all vegetation and the blue region consisting of mostly
road; however, the two regions have the same spectrum,
which is a bad correspondence. In the LSQ freeform result,
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Fig. 7. Qualitative region-spectra correspondence for the four locations in Fig. 6. The three rows are the results for LSQ freeform, LSQ, and MI B-spline,
respectively. For each location magnification, we select the contiguous 4 pixels (in the HS image) and denote the PSF covered regions (in the color image) by
four different colors. The plot shows the spectra corresponding to the four regions after registration (the first column of LSQ has the green and blue spectra
that coincide together). We expect to see continuous spectra transition according to the transition of materials.

Fig. 8. Residual images from reconstruction. The average errors are 5.62,
7.52, 7.62, and 7.48 for the four methods. The CCs for the transformed images
are 0.981, 0.965, 0.964, and 0.967.

the green region has a spectrum between the pure vegetation
spectrum (red) and the mostly road spectrum (blue), implying
a better correspondence. The same phenomena repeat for the
second and third columns. For the first and fourth columns,
MI B-spline has very similar spectra for regions with visu-
ally different materials, implying that it tends to blur the
features.

Since there is no ground truth for this dataset, we need to
resort to a new metric for quantitative comparison. Considering
that most fusion methods assume the validity of the linear
relationship with the PSF and SRF, i.e., (4), we estimated the
SRF, reconstructed the low-resolution color image, and calcu-
lated the RMSE between the reconstructed and the transformed
signals for each pixel. Fig. 8 shows the error maps, where LSQ
freeform achieves the least average error. When it comes to
CC, it also has the highest value 0.981.

Fig. 9. Original HS image and generated test HS and color images. There
are four cloths in the scene (indicated by a red arrow) which we will inspect
for fusion quality.

C. Fusion on Mississippi Gulfport

Finally, we validated the performance of fusion algo-
rithms on a dataset using the same simulation as previous
research, i.e., spatial and spectral downgrading without con-
sidering registration effects. We used the Mississippi Gulfport
dataset, which was collected over the University of Southern
Mississippi–Gulfpark Campus [48]. It has 271 × 284 pixels,
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Fig. 10. Visible bands from the fusion results for the Gulfport dataset.

TABLE II

FUSION RESULTS FOR THE GULFPORT DATASET

with a 1-m spatial resolution and 72 bands covering the
wavelengths from 0.368 to 1.043 μm. The scene is shown
in Fig. 9, which contains various types of sidewalks, roads,
building roofs, concrete, shrubs, trees, and grass. To generate
the HS image, we used s = (9, 9), σ = 10, and ρ = 5.4,
resulting in an 11 × 11 pixel blurring kernel. The SRF for

Fig. 11. Reconstructed spectra at the center pixel of each of the four cloths
in Fig. 9. Compared with the LMM-based methods, more spectral details are
preserved by our method.

Fig. 12. Parameter analysis of the proposed method on the Gulfport dataset.
The accuracy is stable and above the other methods when β ≤ 1 and ρ2 ≥ 10.

the color image was the same as in Section V-A. Noise with
standard deviation σn = 0.0001 was applied to both the
images. The resulting HS image was of size 30 × 31 pixels
and the color image was of size 270 × 279 pixels. Fig. 9
shows the generated images.

The color images of the fusion results from all the algo-
rithms are shown in Fig. 10. Visually, the proposed, CNMF,
and HySure have better reconstructions to the original HS
image. Bayesian Naive suffers from a strong effect from the
smooth Gaussian prior. Similarly, due to the cubic interpola-
tion approximation, GFPCA also has a smooth appearance.
Table II shows the quantitative results from all the algorithms.
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We can see that for most measures, the proposed algorithm
has the best performance, with HySure and CNMF following
up. Fig. 11 shows the reconstructed spectra at the center pixel
of each of the four cloths in Fig. 9. We can clearly see the
advantage of the proposed manifold constraint in complex
urban scenes.

Since we have some free parameters for tuning, the per-
formance of the proposed method may depend on careful
parameter selection. We change the parameters β and ρ2 with
the others fixed. Fig. 12 shows the CC and RMSE with respect
to changing β and ρ2, along with the scores from the other
methods as reference lines. We see that the accuracy is quite
stable and above the competing methods when β ≤ 1 and
ρ2 ≥ 10.

VI. CONCLUSION AND DISCUSSION

In this work, we proposed a registration algorithm and a
fusion algorithm to handle HS and MS images with signifi-
cant scale difference and nonrigid distortion. The registration
algorithm is based on minimizing an objective function with
the PSF and the SRF from the fusion literature, while a
freeform transformation is applied to the HS image and a
rigid transformation is applied to the MS image. The fusion
algorithm minimizes a data fidelity term and a manifold-based
regularization term that assumes invariance of local geometric
properties after spectral degradation.

We also evaluated them in an integrated manner. Specifi-
cally, three datasets were investigated, including a Salton Sea
dataset from AVIRIS and Google Earth, and two simulations
generated by the Pavia University dataset and the Mississippi
Gulfport dataset. For registration, we compared the proposed
nonrigid version with its rigid variation and two variations
based on the MI metric. The results indicate that the proposed
nonrigid algorithm has the best accuracy in general, achieving
less than 0.15 pixels error for nonrigid distortion of maximum
1 HS pixel (spatial calibration of airborne HS images typically
has accuracy within 1 pixel [47]). For fusion, we compared the
proposed algorithm with several state-of-the-art methods. The
results show that it is capable of achieving the state-of-the-art
fusion quality.

A. Model Assumptions

There are two alternatives to the dual geometric transfor-
mations for registration. One is to nonrigidly transform the
MS image with the HS image fixed, then perform fusion, and
transform the fused image back. The problem is that according
to Fig. 1, we may have the same spectrum mapped to different
MS regions. The second alternative is to nonrigidly transform
the HS image with the MS image fixed. The problem is that
we may end up with too many interpolations that ruin the
carefully collected HS spectra. The proposed scheme avoids
these two issues. However, it brings an identifiability issue
to the objective function that is invariant to a constant shift
added to both the transformations. We remedied it in the
implementation by terminating the update of rigid parameters
early. The transformations involving the PSF and the SRF
rely on significant differences in terms of spatial and spectral
resolutions, which is exactly the case we aim for. The PSF

Fig. 13. Regularization fitting error (blue line) and final fusion error (red
line) versus number of bands for the Gulfport dataset. The y-axis has two
scales corresponding to Tr(RT LR)/N ′B (blue line) and RMSE (red line),
respectively.

transformation is valid when the HS and the MS sensors
operate nearby at the same time. When this condition is not
satisfied, the performance will be affected by shadowing and
multiple scattering from nonflat terrain surface.

To validate if the assumption of the regularization term in
fusion holds, we put the ground truth R into the regulariza-
tion term Tr(RT LR) to quantify how accurately the reverse
of (17) holds. Specifically, for the Gulfport dataset, we created
multiple MS images with an increasing number of bands
(decreasing bandwidths) and calculated L values using these
MS images to evaluate this quantity. We also ran the proposed
fusion algorithm on them to check the accuracy. Fig. 13 shows
this quantity and fusion error versus various b. Fig. 13 also
shows that the validity of this assumption is in line with the
fusion quality and that starting from b = 4, the curve has
plateaued, reaching 3 × 10−4, which is possibly the random
noise in the original HS image. Even for small b = 3, its value
is only five times the saturated value. Hence, this verifies our
assumption that the coefficients estimated from the MS image
can be used to constrain the unknown HS image. This could
also explain the robustness of β in Fig. 12. Since the original
fusion problem (15) is undetermined (an infinite number of
solutions exist), a slight regularization should work well. Also,
since this regularization really captures the structure of the
data, it can tolerate a relatively large β value.

B. Parameter Selection

Here, we discuss the strategy to select the registration and
fusion parameters. In registration, α controls the smoothness of
the nonrigid deformation. Considering the interpolation issue
illustrated in Fig. 1, it should be set to be small, e.g., α = 0.05.
λ controls the smoothness of the SRF. We visually checked
the obtained SRF from the Salton Sea dataset to determine
λ = 10−3 N . �t controls the convergence rate of the PDE.
In the experiments, we found that �t = 1 was small enough
to guarantee that the difference scheme converges. In fusion,
γ balances the two data fidelity terms. Clearly, γ = 0.5 is
an ideal choice. We set K = 3 by considering the number
of bands in the MS image and the computational complexity.
β should be less than or equal to one according to Fig. 12.
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Considering the registration errors in Fig. 5, a slight large
value in this range was chosen. ρ2 should be as large as
possible since the manifold should only depend on the spectral
information (considering the actual time cost, we set ρ2 = 15).
This is also verified in Fig. 12. 
 is introduced to speed
up the computation and avoid identifiability issues (since the
neighbors in (16) have similar spectra to the current pixel).
A small 
 = 10−4 is sufficient for these two purposes.

In summary, we would suggest keeping �t = 1, γ = 0.5,
and 
 = 10−4 fixed for all the datasets and noise levels.
For the other parameters, they may be tuned based on the
datasets and noise levels. For example, the scale of the dataset
(e.g., number of pixels) may influence the parameters, though
the algorithm already calibrated it to some extent (e.g., step
1 in Algorithm 1). When we apply the proposed approach
to rural scenes where large homogeneous areas are present,
a wider range of parameters may be accepted (since urban
imagery with complex scenes poses more difficulties in fusion,
e.g., the fusion accuracy on the Pavia and Gulfport datasets
in this article is slightly lower than the rural scene in the
pansharpening review [3]). For the noise level, a large random
noise will lead to large fitting errors of the least-squares
terms. Hence, we may need large α, λ, and β to balance the
regularization terms against the data fidelity terms.

C. Limitation and Future Work

There are several limitations to this work. First, the proposed
registration algorithm relies on pixel-level adjustment, which
may be too expensive for large remote sensing images. Second,
the application of the proposed fusion algorithm to pansharp-
ening (i.e., the MS image becomes a panchromatic image
with only one band) is less desirable. A direct application to
sample images from [3] leads to a CC of 0.973, compared to
0.935 from GFPCA, 0.971 from CNMF, 0.977 from Bayesian
Naive, 0.980 from Bayesian Sparse, and 0.979 from HySure.
This is expected as the less bands, the less likely that the
reverse of (17) is true (see Fig. 13). Third, for the real
dataset, we do not have ground truth and the smallest time
interval that we can find is one year that is too large. Though
most previous research relies on simulated datasets, we still
tried our algorithm on a real dataset, which poses several
problems (see Fig. 1) not considered before. Future work could
extend the validation dataset from airborne (AVIRIS) and
space (Google Earth) images to airborne and ground images.
Moreover, the impact of the terrain surface may be considered
in the registration and fusion processes. Future work could
also include using the proposed integrated approach to build
ground truth for spectral unmixing.
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