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Abstract—Classifying SPECT images requires a preprocessing
step which normalizes the images using a normalization region.
The choice of the normalization region is not standard, and
using different normalization regions introduces normalization
region-dependent variability. This paper mathematically analyzes
the effect of the normalization region to show that normalized-
classification is exactly equivalent to a subspace separation of
the half rays of the images under multiplicative equivalence.
Using this geometry, a new self-normalized classification strategy
is proposed. This strategy eliminates the normalizing region
altogether. The theory is used to classify DaTscan images of
365 Parkinson’s disease (PD) subjects and 208 healthy control
(HC) subjects from the Parkinson’s Progression Marker Initiative
(PPMI). The theory is also used to understand PD progression
from baseline to year 4.

Index Terms—Image Classification, Machine Learning,
PET/SPECT, DaTscan, Parkinson’s Disease.

I. INTRODUCTION

Clinical SPECT (and PET) images are often normalized
before classification [1], [2]. Typically, a normalization region
with nonspecific tracer binding is chosen, and its mean µ
is used to calculate the binding potential (BP), defined as
BP(v) = (I(v) − µ)/µ = (I(v)/µ) − 1 for every voxel
v in an image I [3]. All subsequent image classification is
done using BP rather than the original image. Many different
normalization regions are used in practice, however, they
are not all equivalent [4], [5], [6], [7], [8]; changing the
normalization region changes the downstream results.

Given this dependence on the normalization region, one may
ask whether SPECT/PET images can be classified without
choosing a normalization region. The goal of this paper is
to show that this is possible, without sacrificing accuracy.
We begin in Section III by mathematically analyzing how
normalization affects classification. Such a theory has not
yet appeared in the literature. Based on this analysis, in
Section III-D we propose a new classification strategy which
does not require a normalization region. Instead, the classi-
fication is self-normalizing. A potential pitfall of not using
a normalization region is the possible loss of classification
accuracy. In Section IV, we show that there is no loss of
classification accuracy when self-normalizing classification is
used with real-world data.

Fig. 1. DaTscan images of a normal subject (a,b) and a PD patient (c,d).
Boundaries of caudate and putamen are delineated in yellow and green
respectively. Compared to healthy controls, PD patients have reduced signal
in the caudate and putamen, and the reduction becomes worse over time. The
images were normalized by the mean in the occipital lobe.

For real-world data, we use SPECT images of Parkinson’s
disease (PD). Imaging PD with [123]I-Ioflupane, commonly
called DaTscan imaging, measures the concentration of the
dopamine transporter (DaT) protein. Dopaminergic neuronal
loss in PD is visible as loss of signal in the putamen and
the caudate in DaTscan images (see Fig. 1). The occipital
lobe usually serves as the normalization region [9], [10], [11],
although the cerebellum [12], and the whole brain except the
striatum [10] are also used. As mentioned above, different
normalization regions influence the ability of BP (which is
called the striatal binding ratio (SBR) in PD DaTscans) to
classify PD vs. healthy controls (HC) [5].

We carried out two classification experiments on PD
DaTscan images to validate our theory. First, we classify
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DaTscan images of PD from HC subjects. Second, we clas-
sify longitudinal DaTscan images of PD patients obtained 4
years apart. As explained in Section IV, the latter provides
insight into how PD progresses during this interval. For each
classification problem, we compare the classification accuracy
between the classical normalization and our proposed self-
normalization, using both linear and non-linear classifiers.

II. BACKGROUND AND LITERATURE REVIEW

A. PET/SPECT Normalization

PET/SPECT imaging can be categorized into dynamic and
static imaging. Dynamic imaging acquires images at mul-
tiple time points after tracer injection and is mainly used
in research. Static imaging acquires a single image over a
fixed period hence is suitable for clinical applications. Ana-
lyzing clinical (static) PET/SPECT images typically requires
a preprocessing step which normalizes its intensity [1], [2].
Normalization is required because the amount of radioligand
reaching the brain depends on multiple factors, including age,
sex, and medication. This results in an unknown scaling factor
for each image. Standard normalization selects a normalization
region to calculate the BP, thereby eliminating this scaling
factor, as mentioned before. Note that in PD DaTscans, the
BP is called the striatal binding ratio (SBR) since dopamine
transporters mainly exist in the striatum.

In PD DaTscans, the occipital lobe is usually selected
as the normalization region since it contains few dopamine
transporters [9], [10], [11] and most of the binding of the
radiotracer in this region is non-specific. Other choices for
the normalization region include the cerebellum [12] and the
whole brain except the striatum [10]. Different normalization
regions alter the predictive power of BP to classify PD, up to
a difference of 0.147 in terms of area under the curve [5].

For PET/SPECT imaging using other tracers, e.g. [18
F]fluorodeoxiglucose for visualizing glucose (FDG-PET), the
impact of the normalization regions is also significant [7], [8].

Besides the BP normalization mentioned above, other nor-
malization techniques have also been proposed. For DaTscans,
these include analyzing the distribution of intensity values in
the whole brain except the striatum [13], and minimizing the
squared error within a selected region between a template and
the linear transformed image [1].

B. DaTscan Classification

Classification of DaTscan images into PD and HC has been
achieved using standard machine learning techniques [14],
[15], [10], [11] as well as deep learning methods [16]. Early
classification work tends to use a small proprietary datasets
and perform their own registration [17], [14], while later
work has shifted to using a public dataset: the Parkinson’s
Progression Marker Initiative (PPMI) dataset which provides
already registered DaTscans [15], [11], [18].

Support vector machine (SVM) and logistic regression are
probably the most popular PD vs. HC classifiers, appearing in
most of the non-deep-learning studies [14], [15], [10], [11],
[18], [19]. Graph-based transductive learning was introduced

for classifying multi-modality neurodegenerative image data
in [20]. Recently, convolutional neural networks (CNN) have
been applied to classifying DaTscan images for PD diagnosis
[21], [16], [22]. Most of these methods calculate the SBR
using a normalization region as a pre-processing step before
classification [15], [11], [18].

Other studies use geometric image features including the
length and volume of the segmented striatum [23], shape fitting
coefficients [24], [25], isosurfaces [16], and intensity summary
statistics [22].

III. NORMALIZATION AND CLASSIFICATION

We now turn to explaining the effect of normalization
on classification. The effect is most easily explained using
linear classification, and we stick to linear classification for
most of this section. However, non-linear classification is also
addressed.

To begin, note that images differing by a multiplicative
factor, such as I2 = αI1 for α > 0, give the same BP. The −1
term in the BP simply adds a fixed constant to every voxel,
and has no effect on classification. We ignore this term.

A. Multiplicative Equivalence

Let Ω be the set of voxels in an image, with the total number
of voxels being d. Any nonzero image I defined on Ω is an
element of Rd. SPECT/PET images have non-negative voxels,
i.e. these images lie in the non-negative orthant of Rd with
the origin removed. Geometrically speaking, the set of all
images related by positive scalar multiples is a half-ray passing
through the origin of Rd (see Fig. 2(a)). We denote the half
ray of the image I by [I]. We also denote the set of all half-
rays passing through the non-negative orthant of Rd (with the
origin removed) as I. Classifying images under multiplicative
equivalence means partitioning I into disjoint subsets.

B. Normalized-Classification

A normalization region is a set of voxels N ⊂ Ω. All images
restricted to N form a subspace of Rd, which we denote as
ΠN . The projection operator πN : Rd → ΠN projects an
image onto this subspace by setting values outside N to zero.

Let 1 = [1, 1, . . . , 1]T ∈ Rd denote an image with all 1’s.
Then πN (1) is the image containing all 1’s in the voxels N
and 0’s everywhere else. For any image I , the mean value
in the normalization region is 1

|N | (πN (1))T I , where |N | is
the number of voxels in N . Denoting 1

|N |πN (1) by 1N ,
the mean value in the normalization region is simply 1T

NI
and the normalized image is Ĩ = I/1T

NI . Normalization
can be interpreted geometrically after noting that the mean
value of Ĩ in the normalization region is always 1, since
1T
N Ĩ = 1T

N (I/1T
NI) = 1. Thus the geometry of normalization

is explained as follows (see Fig. 2(b)): From the image I
construct the half-ray [I]. Then the normalized image Ĩ is the
intersection of the half ray [I] with AN , the d−1 dimensional
affine subspace defined by AN =

{
x ∈ Rd : 1T

Nx = 1
}

.
Once the image is normalized, it is classified using voxels

in another region C ⊂ Ω. We assume that N ∩C = ∅, i.e. the
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D

Fig. 2. The geometry of classical normalized-classification and our self-normalized classification. (a) Standard normalization for clinical PET/SPECT images
means that images differing by a scaling factor are equivalent. All such images form a half-ray [I]. (b) Normalization is equivalent to finding the intersection
between [I] and affine subspace AN . Linear classification of normalized images (normalized-classification) has the classification boundary B ∩ AN . (c)
Normalized-classification using B ∩AN is equivalent to classifying the half-rays using a subspace D. (d) Proposed self-normalized classification: project the
voxels onto the unit sphere and use an affine subspace to separate them. (e) The idea extends to nonlinear classifiers since nonlinear boundaries in AN also
correspond to nonlinear boundaries on the unit sphere.

normalization and classification voxels are disjoint. Similar to
N above, images restricted to C form the subspace ΠC of Rd.
Because N and C are disjoint, we have ΠC ⊥ ΠN .

A linear classifier chooses a unit norm vector w ∈ ΠC and a
real number b to define a decision boundary wT Ĩ−b = 0. We
refer to linear classification using the normalized image Ĩ as
normalized-classification, and its boundary as the normalized-
classification boundary. This boundary has an alternate de-
scription. First consider the equation wTx − b = 0 for
x ∈ Rd. Because w 6= 0, this equation describes a d − 1
dimensional affine subspace of Rd. Call it B (see Fig. 2(b)).
Then the normalized-classification boundary wT Ĩ − b = 0 is
the intersection of B and AN (see Fig. 2(b)), which is the set
of all x ∈ Rd satisfying(

wT

1T
N

)
x =

(
b
1

)
. (1)

Because w and 1N are linearly independent, B∩AN is a d−2
dimensional affine subspace of Rd.

C. From Normalized-Classification to Subspace Classification

A slight shift in point-of-view shows that normalized-
classification is really just a classification of half-rays by
subspaces. The key idea here is to take D = span(B ∩ AN )
(see Fig. 2(c)). Because D is a span of a set of points, D is
a subspace of Rd. It has properties that are described below.
Proofs of all properties can be found in the Appendix.

Claim 1: The subspace D has dimension d− 1 and is the set
of all x ∈ Rd satisfying (w − b1N )Tx = 0.

Because D is a subspace, any half-ray through the origin of
Rd stays exactly on one side of it, or is contained in it. Thus:

Claim 2: Every normalized-classification of images is com-
pletely equivalent to a classification of the half-rays by the
subspace (w − b1N )Tx = 0.

In other words, the classification of normalized images Ĩ is
exactly the same as the classification of half-rays [I] by D (see
Fig. 2(c)). We call the subspace D, a classification subspace,
and classification of half-rays it achieves subspace classifi-
cation. Recalling that a normalized-classification boundary is
determined by the pair w, b, further analysis shows that

Claim 3: Every distinct normalized-classification boundary
pair w, b gives a unique classification subspace D.

In other words, normalized-classification of images is com-
pletely equivalent to subspace classification of half-rays.

Next, we turn to ask: What happens to normalized-
classification if the normalization region is changed? Specif-
ically, suppose that the classification region C remains fixed,
but we have two different normalization regions N 6= N ′, with
corresponding normalized-classification boundaries given by
w, b and w′, b′ respectively. Because normalized-classification
is equivalent to subspace classification of I, we ask when the
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corresponding classification subspaces D,D′ are the same?
The result is:

Claim 4: D = D′ if and only if w = w′ and b = b′ = 0.

Claim 4 shows that changing the normalization region can
give the same classification subspace only in very special cases
where b = b′ = 0. Classification with b = 0 rarely happens in
real-world classification. Claim 4 explains why changing the
normalization region changes the classification.

D. Self-normalized Classification

The above analysis strongly suggests how the dependence
on the normalization region can be eliminated altogether: Take
the intersection of each half-ray and the unit sphere in Rd

(see Fig. 2(d)) and then classify the intersection points with
a subspace. There is no normalization region involved in this;
the data normalizes itself — it is self-normalizing.

This idea can be pushed further in two ways: First, we need
not classify the intersection points on the sphere with only a
subspace. We can use any d− 1 dimensional affine subspace.
Second, we can apply the same idea to the image restricted to
the classification voxels C. That is, we take only intensities of
voxels in C, project them to the unit sphere, and classify them
using an affine subspace. This too eliminates the normalization
region.

E. Non-linear Classification

The above ideas extend easily to nonlinear classification.
To see how, first note that the normalization step is the
same as before. It corresponds to moving the image I to
the intersection of the half-ray [I] and AN . However, the
classification boundary, which was the affine subspace B∩AN

in Fig. 2, is no longer linear. Suppose it is a d−2 dimensional
sub-manifold of AN , which we will call D (see Fig. 2(e)).
Every x ∈ D gives a half-ray [x] and this half ray intersects the
unit sphere at a single point. Because D is a d−2 dimensional
submanifold, the set of all half rays of points in D is a d− 1
dimensional submanifold of Rd, and this manifold intersects
the unit sphere transversely to give a d − 2 dimensional
submanifold of the unit sphere. Denote this submanifold as D̂
(see Fig. 2(e)). It is straightforward to see that the partition (i.e.
classification) of I by D is identical to the partition of I by
D̂. The converse is also straightforward: By simply reversing
the argument it is easy to see that any classification boundary,
which is a d − 2 dimensional submanifold of the part of the
unit sphere in the non-negative orthant of Rd, induces a d− 2
dimensinal submanifold as a classification boundary in AN .
Thus, we have

Claim 5: Every non-linear classification boundary in AN

which is a d − 2 dimensional submanifold is equivalent to
a classification boundary on the unit sphere which is also a
d−2 dimensional submanifold. The converse is also true for all
decision boundaries that are d − 2 dimensional submanifolds
in the non-negative part of the unit sphere.

The theory developed so far suggests that normalized clas-
sification and self-normalized classification are equivalent. In
other words, there should be no loss of classification accuracy
with self-normalized classification. Whether this holds in prac-
tice is addressed in the next Section using the PPMI DaTscan
dataset. Because this is a PD DaTscan dataset, we refer to BP
as SBR from now on.

IV. NUMERICAL RESULTS

A. PPMI Data

The PPMI dataset contains 449 early-stage PD subjects and
210 HC subjects. The PD subjects have scans at baseline, and
at approximately 1, 2, 4, and 5 years from baseline, with
missing scans. Most of the HC subjects have only a single
scan. The images have a size of 109 × 91 × 91 voxels, with
2 mm3 voxels. The images are already registered by PPMI
to the Montreal Neurological Institute (MNI) atlas. However,
following the procedure in [26], we found and removed some
misregistered images. This left us with 365 PD subjects (ages:
62.6 ± 9.8 years, male/female: 237/128) and 208 HC subjects
(ages: 60.6 ± 11.2 years, male/female: 135/73) to analyze. All
PD subjects had baseline images, but only 136 PD subjects had
images at year 4.

Because PD affects the two brain hemispheres asymmetri-
cally, the DaTscan images were flipped around the mid-plane
so that the more affected side was on the right. For normalized-
classification, we used the occipital lobe as the normalization
region (N ) and the striatum as the classification region (C).
The striatum mask was derived by applying Otsu’s threshold
[27] on the mean HC image to remove the background and
then applying it again on the remaining voxels to remove the
nonspecific binding voxels. The occipital lobe mask was taken
from [26]. All masks were restricted to the 29–55th slices.

B. Experimental Setup

The ultimate goal of our experiments is to verify the
classification accuracy of the self-normalized classification of
Section III-D. However, an important subgoal is to determine
whether self-normalized classification provided useful infor-
mation about voxels that are important to classification. This
can be achieved by analyzing the weights for linear classifiers
and the saliency maps [28] for non-linear classifiers.

We carried out two classifications: 1) HC vs. PD using only
the baseline images, 2) Baseline PDs vs. PDs at year 4. The
PD vs. HC classification has obvious clinical importance. The
baseline vs year 4 classification is not clinically useful on
its own, but because it identifies voxels where the disease
progresses from baseline to year 4, it provides a simple disease
progression footprint.

In each classification problem, we used three normalization
strategies:

1) classical normalization using SBR with occipital lobe
normalization (referred to as SBR from now on),

2) self-normalization via a projection of all voxels from
the striatum and the occipital lobe onto the unit sphere
(referred to as S + O),
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3) self-normalization via a projection of voxels only from
the striatum to the unit sphere (referred to as S).

To avoid numerical underflow problems, the radius of the
sphere used in self-normalization was set to

√
d, where d

is the dimension (number of voxels) of the region being
projected. The dimension d for the above three strategies are
d = 9948, 43077, and 9948 respectively.

Along with each normalization, we used three classifiers,
two of which were linear: logistic regression (LR) and SVM,
and one of which was nonlinear: convolutional neural network
(CNN). The linear classifiers had a sparsity constraint as
implemented in the fitclinear function in Matlab with a sparsa
optimizer [29]. The nonlinear classifier was implemented
in PyTorch with 2 convolutional/pooling layers (kernel size
5× 5× 5, 6 and 16 feature maps respectively) followed by 2
linear layers (120 hidden nodes). We used the ReLu activation
function after the convolutional/linear layers. For the CNN,
voxels were inserted into a 3D image cube padded by zeros.
The combination of normalization method with the classifier
led to 3× 3 = 9 classification experiments, whose results are
reported below.

For every classification task, we randomly split the data set
100 times into a training set (80%) and a test set (20%). The
sparsity parameter for the linear classifiers was chosen using
10-fold cross validation on the 100 training sets. Fig. 3 shows
the cross validation results of PD vs. HC. Similar curves (not
shown) were obtained for PD baseline vs. PD year 4 classi-
fication. Because CNN training is computationally expensive,
we did not use cross validation to set the hyperparameters
for the nonlinear classifier. Instead, the learning rate was set
manually to 0.01 and the number of epochs was set to 500.
We used a scheduler which reduced the learning rate by half
after half of the epochs. Furthermore, 10% of the training set
was kept as the validation set and the remaining was used to
train the neural network. We pick the network parameters with
the highest accuracy (over the epochs) on the validation set for
test.

C. Classification Accuracy

The classification accuracies of the 100 training/test sets for
PD vs. HC and PD baseline vs. PD year 4 are shown in Fig. 4.
For PD vs. HC, classical SBR (SBR), the self-normalized stria-
tum plus occipital lobe voxels (S + O), and the self-normalized
striatum voxels (S) lead to almost identical results for the test
set (see Fig. 4(a) and Table I). The classification accuracies
for the test set are quite high (the classification accuracies
for the training set are similar). In fact, the classification
accuracies in Table I are noticeably higher than those reported
in the literature that use the same PPMI data (typical reported
accuracies are in the range 95.1–97.9%) [15], [11], [19], [23],
[16].

To compare the classification accuracies of standard SBR
vs. self-normalized methods, we calculated p-values from a
t-test comparing the mean classification accuracy of the self-
normalizing methods to that of standard SBR. The p-values

Fig. 3. Cross validation of the linear classifiers for PD vs. HC. The central
blue curve shows mean classification error over 100 runs for sparsity param-
eter λ ranging from 2−20 to 2−1. The shaded area shows the corresponding
standard deviation. The vertical red dashed lines indicate the chosen λ’s. LR:
Logistic Regression, SVM: Support Vector Machine, SBR: Striatum Binding
Ratio, S + O: Striatum + Occipital lobe, S: Striatum.

TABLE I
TEST ACCURACIES OVER 100 RUNS FOR HC VS. PD AND p-VALUES FROM

t-TEST FOR DIFFERENCE SIGNIFICANCE

Mean (std) of accuracies (%) p-value (vs. SBR)
SBR S + O S S + O S

LR 98.77 (0.97) 98.81 (0.91) 98.94 (0.86) 0.744 0.181
SVM 98.67 (1.02) 98.77 (0.86) 98.69 (0.98) 0.475 0.902
CNN 98.68 (1.07) 98.59 (0.94) 98.41 (1.08) 0.543 0.079

(see Table I) are all significantly above 0.05, showing that there
is no significant performance difference between the methods.

Classification accuracies for PD baseline vs. PD year 4
show a similar pattern (see Fig. 4(b) and Table II). While
the classification accuracies are not as high as PD vs. HC
(this is discussed further in Section V), the differences in
the performance of the classifiers are again not statistically
significant, except for one case (LR on S + O).

D. Salient Voxels

Recall that part of our goal is to identify salient voxels
(voxels which contribute significantly to classification). As
mentioned before, classification weights of linear classifiers
indicate these voxels. For nonlinear classifiers, the saliency
map [28], which calculates the derivative of the logit with
respect to the input, can be used for similar purposes. Because

TABLE II
TEST ACCURACIES OVER 100 RUNS FOR PD BASELINE VS. PD YEAR 4

AND p-VALUES FROM t-TEST FOR DIFFERENCE SIGNIFICANCE

Mean (std) of accuracies (%) p-value (vs. SBR)
SBR S + O S S + O S

LR 77.74 (3.92) 76.47 (4.17) 77.50 (3.94) 0.028 0.666
SVM 75.29 (4.42) 74.63 (4.69) 76.51 (4.50) 0.307 0.055
CNN 73.02 (4.33) 71.74 (5.38) 71.90 (6.08) 0.066 0.135
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(a) HC vs. PD (b) PD baseline vs. PD year 4

Fig. 4. Violin plots of classification accuracies over 100 runs for PD vs. HC (a) and PD baseline vs. PD year 4 (b). In each subplot, the first row corresponds
to the training error and the second corresponds to the test error. LR: Logistic Regression, SVM: Support Vector Machine, CNN: convolutional neural network,
SBR: Striatum Binding Ratio, S + O: Striatum + Occipital lobe (projected to the unit sphere), S: Striatum (projected to the unit sphere).

the saliency map is calculated for each test example, we took
one train-test split and averaged the saliency maps over all the
test examples.

The linear weights and the averaged saliency maps are
shown in Fig. 5. Over the 9 combinations of normalizing
strategies and classifiers used for each classification task, the
results are surprisingly consistent. For HC vs. PD, the negative
classifier weights and negative saliency (both rendered in blue)
for PD vs. HC are mostly in the putamen on the right side
(the more affected putamen). The positive weights and positive
saliency is mostly in the left caudate (the least affected side).
Thus reduced values in the right putamen relative to the values
in the left caudate are significant in classifying PD vs. HC.

PD baseline vs. PD year 4 shows negative coefficients and
negative saliency in the putamen on the left side, showing that
decreasing values in this putamen corresponds to progression
from baseline to year 4.

To make the above observations more quantitative, we
evaluated the contribution of each region to the classification.
Noting that all classifiers give almost identical salient voxels,
we focused on the sparse logistic linear classifier. We restricted
w to each of the four caudate and putamen regions from the
MNI atlas, and evaluated wT Î using the restricted w and self-
normalized Î for PD vs. HC and PD baseline vs. PD year 4.
For PD vs. HC, the mean wT Î has the largest difference when
w is restricted to the right putamen, indicating that this is the
region where PD has the largest effect (see Fig. 6). Similarly,
for PD baseline vs. PD year 4, we evaluated the mean for PD
baseline and year 4. The largest change in the mean is in the
left putamen (see Fig. 6).

V. DISCUSSION AND CONCLUSION

The experiments clearly show that self-normalized classi-
fication does not lead to any loss of classification accuracy.
In fact, as noted above, the classification accuracies for PD

vs. HC are higher than those reported in the literature. One
contributing factor to the increased accuracy is the fact that
the images were flipped around the mid-plane so that the more
affected side appears to the right.

The lower accuracy of PD baseline vs. year 4 is also
understandable. It is estimated that the onset of PD occurs
almost 10 years before PD is diagnosed [30]. Thus PD vs. HC
images, even at baseline, have about 10 years of accumulated
disease evidence for classification. In contrast, baseline vs
year 4 has evidence accumulated from less than half of that
time. Moreover, the PD images at baseline may correspond to
different stages of the disease. Therefore, the two classes are
not as easily separable as PD vs. HC.

Finally, the salient voxels identified by the classifiers are
quite meaningful. PD is known to start asymmetrically, af-
fecting the putamen in one hemisphere before affecting the
caudate. Then, as the disease progresses, it affects the other
hemisphere. Consistent with this, our results show a decrease
in DaTscan intensity in the right putamen (compared with the
left caudate) is significant in classifying baseline PD vs. HC.
And subsequent decrease in the left putamen is indicative of
longitudinal progression from baseline to year 4.

In summary, the geometry of multiplicative equivalence
shows that PET/SPECT images can be classified by self-
normalization without any loss of accuracy. This method is
effective with linear and non-linear classifiers, and it provides
an understanding of disease affecting voxels in the image.
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Fig. 5. Linear classifier weights and saliency maps. (a) Masks of caudate (yellow), putamen (green) from the MNI atlas (dilated by 1 voxel), and striatum
and occipital lobe (cyan area) for the 40th to 42nd slices. The background shows the mean HC image. (b-d) Weights of LR, SVM and saliency maps of CNN
on SBR and sphere projected voxels for PD vs. HC. (e-g) Weights and saliency maps for PD baseline vs. PD year 4. The values of weights/saliency maps
are rendered in red and blue colors indicated by the colorbar on the right. Only the 40th to 42nd slices are shown.

Fig. 6. Mean ± standard deviation of wT Î with Î being S and w being the
LR weights restricted to LC, RC, LP, RP for PD vs. HC (first row) and PD
baseline vs. PD year 4 (second row). The number below each plot indicates
the net change in mean value of wT Î . It measures the contribution of this
region to the decision boundary. LC/LP: Left (less affected) Caudate/Putamen,
RC/RP: Right (more affected) Caudate/Putamen.
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APPENDIX: PROOFS OF CLAIMS

Proof of Claim 1: B and AN are distinct d− 1 dimensional
subspaces of Rd. Thus their intersection B∩AN is non-empty,
and is an affine subspace of Rd. Moreover, B ∩AN does not
contain the origin (because AN does not) and has dimension
d − 2. Thus its span has dimension d − 2 + 1 = d − 1, i.e.
dim D = d− 1.

Denote the set of all x ∈ Rd satisfying (w − b1N )Tx = 0
by D′. Because the unit norm vector w ∈ ΠC , and the nonzero
vector 1N ∈ ΠN , and ΠC ⊥ ΠN , w is linearly independent

of 1N . Hence the vector (w − b1N ) cannot be 0 for any b.
Thus D′ is a d − 1 dimensional subspace of Rd. We have to
show that D′ is equal to D. Any x ∈ B ∩ AN satisfies(

wT

1T
N

)
x =

(
b
1

)
. (2)

Subtracting b times the second row of the equation from the
first shows that x also satisfies (w− b1N )Tx = 0. It follows
that if x1,x2 ∈ B∩AN , then (w−b1N )T (α1x1+α2x2) = 0,
showing that D, which is the span of B∩AN , is contained in
D′. But dim D = dim D′ = d− 1, hence D = D′. �

Proof of Claim 2: All images whose normalized versions lie
on one side of B have half-rays that lie on one side of D. �

Proof of Claim 3: The proof is by contradiction. Suppose
we have unit norm vectors w1,w2 ∈ ΠC and real numbers
b1, b2, such that (w1, b1) 6= (w2, b2). And suppose that the
classification subspaces for the two are equal. The classi-
fication subspaces are given by (w1 − b11N )Tx = 0 and
(w2 − b21N )Tx = 0. For these subspaces to be the same,
there must exist a λ such that λ(w1− b11N ) = (w2− b21N ).
Rearranging this equation gives (λw1−w2) = (λb1− b2)1N .
The term on the left hand side is a linear combination of
vectors in ΠC , hence is a vector in ΠC . The term on the
right hand side is a vector in ΠN . Since ΠC ⊥ ΠN the
equation can hold only if each term is 0. Setting the left hand
side to 0 gives λw1 = w2. Since w1 and w2 are unit norm
vectors, this implies λ = 1 and w1 = w2. Similarly, setting
the right hand side equal to zero, and using λ = 1, gives
b1 = b2. Thus the two classification subspaces are the same
if and only if w1 = w2 and b1 = b2, which contradicts the
assumption. Therefore, the subspace classification boundaries
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are different, showing that each pair w, b gives a unique
subspace classification boundary. �

Proof of Claim 4: Since the normalization regions N 6= N ′,
the vectors 1N and 1N ′ are linearly independent. Also since
N and N ′ are both normalization regions, ΠN ,ΠN ′ ⊥ ΠC .
Thus their direct sum ΠN ⊕ΠN ′ is also orthogonal to ΠC .

Suppose D = D′. Then, there must exist a λ such that
λ(w− b1N ) = (w′ − b′1N ′), i.e. λw−w′ = λb1N − b′1N ′ .
As before, the left hand side of this equation is a vector in
ΠC . The right hand side is a vector in ΠN ⊕ ΠN ′ and thus
orthogonal to ΠC . The two vectors can be equal only if they
are 0. Equating the left hand side to 0 gives w = w′ and λ =
1. Equating the right hand side to zero, and using λ = 1, gives
b1N = b′1N ′ . Since 1N and 1N ′ are linearly independent, this
is possible only if b = b′ = 0, which proves the Claim in one
direction.

For the opposite direction, assuming w = w′ and b = b′ =
0 gives wTx = 0 as the equation for both D and D′, showing
that they are identical. �
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